| ## Triton Inference Serving Best Practice for F5-TTS | |
| ### Setup | |
| #### Option 1: Quick Start | |
| ```sh | |
| # Directly launch the service using docker compose | |
| MODEL=F5TTS_v1_Base docker compose up | |
| ``` | |
| #### Option 2: Build from scratch | |
| ```sh | |
| # Build the docker image | |
| docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12 | |
| # Create Docker Container | |
| your_mount_dir=/mnt:/mnt | |
| docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12 | |
| ``` | |
| ### Build TensorRT-LLM Engines and Launch Server | |
| Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/whisper). | |
| ```sh | |
| # F5TTS_v1_Base | F5TTS_Base | F5TTS_v1_Small | F5TTS_Small | |
| bash run.sh 0 4 F5TTS_v1_Base | |
| ``` | |
| > [!NOTE] | |
| > If use custom checkpoint, set `ckpt_file` and `vocab_file` in `run.sh`. | |
| > Remember to used matched model version (`F5TTS_v1_*` for v1, `F5TTS_*` for v0). | |
| > | |
| > If use checkpoint of different structure, see `scripts/convert_checkpoint.py`, and perform modification if necessary. | |
| > [!IMPORTANT] | |
| > If train or finetune with fp32, add `--dtype float32` flag when converting checkpoint in `run.sh` phase 1. | |
| ### HTTP Client | |
| ```sh | |
| python3 client_http.py | |
| ``` | |
| ### Benchmarking | |
| #### Using Client-Server Mode | |
| ```sh | |
| # bash run.sh 5 5 F5TTS_v1_Base | |
| num_task=2 | |
| python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts | |
| ``` | |
| #### Using Offline TRT-LLM Mode | |
| ```sh | |
| # bash run.sh 7 7 F5TTS_v1_Base | |
| batch_size=1 | |
| split_name=wenetspeech4tts | |
| backend_type=trt | |
| log_dir=./tests/benchmark_batch_size_${batch_size}_${split_name}_${backend_type} | |
| rm -r $log_dir | |
| torchrun --nproc_per_node=1 \ | |
| benchmark.py --output-dir $log_dir \ | |
| --batch-size $batch_size \ | |
| --enable-warmup \ | |
| --split-name $split_name \ | |
| --model-path $ckpt_file \ | |
| --vocab-file $vocab_file \ | |
| --vocoder-trt-engine-path $VOCODER_TRT_ENGINE_PATH \ | |
| --backend-type $backend_type \ | |
| --tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1 | |
| ``` | |
| ### Benchmark Results | |
| Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE. | |
| | Model | Concurrency | Avg Latency | RTF | Mode | | |
| |---------------------|----------------|-------------|--------|-----------------| | |
| | F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server | | |
| | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM | | |
| | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch | | |
| ### Credits | |
| 1. [Yuekai Zhang](https://github.com/yuekaizhang) | |
| 2. [F5-TTS-TRTLLM](https://github.com/Bigfishering/f5-tts-trtllm) | |