## Triton Inference Serving Best Practice for F5-TTS ### Setup #### Option 1: Quick Start ```sh # Directly launch the service using docker compose MODEL=F5TTS_v1_Base docker compose up ``` #### Option 2: Build from scratch ```sh # Build the docker image docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12 # Create Docker Container your_mount_dir=/mnt:/mnt docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12 ``` ### Build TensorRT-LLM Engines and Launch Server Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/whisper). ```sh # F5TTS_v1_Base | F5TTS_Base | F5TTS_v1_Small | F5TTS_Small bash run.sh 0 4 F5TTS_v1_Base ``` > [!NOTE] > If use custom checkpoint, set `ckpt_file` and `vocab_file` in `run.sh`. > Remember to used matched model version (`F5TTS_v1_*` for v1, `F5TTS_*` for v0). > > If use checkpoint of different structure, see `scripts/convert_checkpoint.py`, and perform modification if necessary. > [!IMPORTANT] > If train or finetune with fp32, add `--dtype float32` flag when converting checkpoint in `run.sh` phase 1. ### HTTP Client ```sh python3 client_http.py ``` ### Benchmarking #### Using Client-Server Mode ```sh # bash run.sh 5 5 F5TTS_v1_Base num_task=2 python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts ``` #### Using Offline TRT-LLM Mode ```sh # bash run.sh 7 7 F5TTS_v1_Base batch_size=1 split_name=wenetspeech4tts backend_type=trt log_dir=./tests/benchmark_batch_size_${batch_size}_${split_name}_${backend_type} rm -r $log_dir torchrun --nproc_per_node=1 \ benchmark.py --output-dir $log_dir \ --batch-size $batch_size \ --enable-warmup \ --split-name $split_name \ --model-path $ckpt_file \ --vocab-file $vocab_file \ --vocoder-trt-engine-path $VOCODER_TRT_ENGINE_PATH \ --backend-type $backend_type \ --tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1 ``` ### Benchmark Results Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE. | Model | Concurrency | Avg Latency | RTF | Mode | |---------------------|----------------|-------------|--------|-----------------| | F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server | | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM | | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch | ### Credits 1. [Yuekai Zhang](https://github.com/yuekaizhang) 2. [F5-TTS-TRTLLM](https://github.com/Bigfishering/f5-tts-trtllm)