SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'EHL tendon reconstruction',
'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
'Flexor tendon reconstruction. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.887 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 10,053 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 8.86 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 21.84 tokens
- max: 62 tokens
- min: 3 tokens
- mean: 13.65 tokens
- max: 50 tokens
- Samples:
anchor positive negative COM-induced secretome changes in U937 monocytesCharacterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes.Monocytes.MetamaterialsSound attenuation optimization using metaporous materials tuned on exceptional points.Metamaterials: A cat's eye for all directions.Pediatric ParasitologyParasitic infections among school age children 6 to 11-years-of-age in the Eastern province.[DIALOGUE ON PEDIATRIC PARASITOLOGY]. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0002num_train_epochs: 2lr_scheduler_type: cosine_with_restartswarmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0002weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: cosine_with_restartslr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.457 |
| 0.0189 | 1 | 5.2934 | - |
| 0.0377 | 2 | 5.2413 | - |
| 0.0566 | 3 | 4.9969 | - |
| 0.0755 | 4 | 4.5579 | - |
| 0.0943 | 5 | 3.9145 | - |
| 0.1132 | 6 | 3.3775 | - |
| 0.1321 | 7 | 2.8787 | - |
| 0.1509 | 8 | 3.0147 | - |
| 0.1698 | 9 | 2.7166 | - |
| 0.1887 | 10 | 2.7875 | - |
| 0.2075 | 11 | 2.3848 | - |
| 0.2264 | 12 | 2.1921 | - |
| 0.2453 | 13 | 1.7009 | - |
| 0.2642 | 14 | 1.7649 | - |
| 0.2830 | 15 | 1.7948 | - |
| 0.3019 | 16 | 1.5384 | - |
| 0.3208 | 17 | 1.6039 | - |
| 0.3396 | 18 | 1.3364 | - |
| 0.3585 | 19 | 1.3852 | - |
| 0.3774 | 20 | 1.2427 | - |
| 0.3962 | 21 | 1.3216 | - |
| 0.4151 | 22 | 1.4202 | - |
| 0.4340 | 23 | 1.2754 | - |
| 0.4528 | 24 | 1.281 | - |
| 0.4717 | 25 | 1.1709 | 0.815 |
| 0.4906 | 26 | 1.2363 | - |
| 0.5094 | 27 | 1.2169 | - |
| 0.5283 | 28 | 1.1495 | - |
| 0.5472 | 29 | 1.0066 | - |
| 0.5660 | 30 | 1.0478 | - |
| 0.5849 | 31 | 1.1511 | - |
| 0.6038 | 32 | 0.9992 | - |
| 0.6226 | 33 | 1.095 | - |
| 0.6415 | 34 | 1.1699 | - |
| 0.6604 | 35 | 0.9866 | - |
| 0.6792 | 36 | 1.1303 | - |
| 0.6981 | 37 | 1.1126 | - |
| 0.7170 | 38 | 0.889 | - |
| 0.7358 | 39 | 1.0355 | - |
| 0.7547 | 40 | 1.0129 | - |
| 0.7736 | 41 | 1.118 | - |
| 0.7925 | 42 | 0.8494 | - |
| 0.8113 | 43 | 1.0829 | - |
| 0.8302 | 44 | 0.8751 | - |
| 0.8491 | 45 | 0.8115 | - |
| 0.8679 | 46 | 0.8579 | - |
| 0.8868 | 47 | 1.1111 | - |
| 0.9057 | 48 | 0.9032 | - |
| 0.9245 | 49 | 1.0394 | - |
| 0.9434 | 50 | 0.9691 | 0.862 |
| 0.9623 | 51 | 1.023 | - |
| 0.9811 | 52 | 0.9465 | - |
| 1.0 | 53 | 0.6713 | - |
| 1.0189 | 54 | 0.9773 | - |
| 1.0377 | 55 | 0.8693 | - |
| 1.0566 | 56 | 0.7187 | - |
| 1.0755 | 57 | 0.805 | - |
| 1.0943 | 58 | 0.728 | - |
| 1.1132 | 59 | 1.0967 | - |
| 1.1321 | 60 | 0.7036 | - |
| 1.1509 | 61 | 0.8213 | - |
| 1.1698 | 62 | 0.57 | - |
| 1.1887 | 63 | 0.7006 | - |
| 1.2075 | 64 | 0.5091 | - |
| 1.2264 | 65 | 0.5758 | - |
| 1.2453 | 66 | 0.4484 | - |
| 1.2642 | 67 | 0.397 | - |
| 1.2830 | 68 | 0.6172 | - |
| 1.3019 | 69 | 0.513 | - |
| 1.3208 | 70 | 0.4447 | - |
| 1.3396 | 71 | 0.3205 | - |
| 1.3585 | 72 | 0.5881 | - |
| 1.3774 | 73 | 0.2543 | - |
| 1.3962 | 74 | 0.3648 | - |
| 1.4151 | 75 | 0.4849 | 0.876 |
| 1.4340 | 76 | 0.3455 | - |
| 1.4528 | 77 | 0.3424 | - |
| 1.4717 | 78 | 0.224 | - |
| 1.4906 | 79 | 0.18 | - |
| 1.5094 | 80 | 0.2255 | - |
| 1.5283 | 81 | 0.3024 | - |
| 1.5472 | 82 | 0.1835 | - |
| 1.5660 | 83 | 0.1946 | - |
| 1.5849 | 84 | 0.1958 | - |
| 1.6038 | 85 | 0.1568 | - |
| 1.6226 | 86 | 0.1626 | - |
| 1.6415 | 87 | 0.1774 | - |
| 1.6604 | 88 | 0.1934 | - |
| 1.6792 | 89 | 0.2426 | - |
| 1.6981 | 90 | 0.2958 | - |
| 1.7170 | 91 | 0.1606 | - |
| 1.7358 | 92 | 0.2281 | - |
| 1.7547 | 93 | 0.1786 | - |
| 1.7736 | 94 | 0.2241 | - |
| 1.7925 | 95 | 0.1909 | - |
| 1.8113 | 96 | 0.236 | - |
| 1.8302 | 97 | 0.1332 | - |
| 1.8491 | 98 | 0.1247 | - |
| 1.8679 | 99 | 0.156 | - |
| 1.8868 | 100 | 0.2152 | 0.889 |
| 1.9057 | 101 | 0.1549 | - |
| 1.9245 | 102 | 0.2226 | - |
| 1.9434 | 103 | 0.21 | - |
| 1.9623 | 104 | 0.2139 | - |
| 1.9811 | 105 | 0.1864 | - |
| 2.0 | 106 | 0.0719 | 0.887 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 52
Model tree for wwydmanski/modernbert-pubmed-v0.1
Base model
answerdotai/ModernBERT-baseEvaluation results
- Cosine Accuracy on triplet devself-reported0.887