Spaces:
Build error
Build error
File size: 11,578 Bytes
69b5a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
from typing import List, Dict, Optional
import json
import numpy as np
import pandas as pd
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from huggingface_hub import InferenceClient
# =========================
# Configuraci贸n
# =========================
HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_ID = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-t5-large")
app = FastAPI(
title="Chronos-2 Forecasting API (HF Inference)",
description=(
"API de pron贸sticos usando Chronos-2 via Hugging Face Inference API. "
"Compatible con Excel Add-in."
),
version="1.0.0",
)
# Configurar CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # En producci贸n, especificar dominios permitidos
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Cliente de HF Inference
if not HF_TOKEN:
print("鈿狅笍 WARNING: HF_TOKEN no configurado. La API puede no funcionar correctamente.")
print(" Configura HF_TOKEN en las variables de entorno del Space.")
client = None
else:
client = InferenceClient(token=HF_TOKEN)
# =========================
# Modelos Pydantic
# =========================
class UnivariateSeries(BaseModel):
values: List[float]
class ForecastUnivariateRequest(BaseModel):
series: UnivariateSeries
prediction_length: int = Field(7, description="N煤mero de pasos a predecir")
quantile_levels: Optional[List[float]] = Field(
default=[0.1, 0.5, 0.9],
description="Cuantiles para intervalos de confianza"
)
freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")
class ForecastUnivariateResponse(BaseModel):
timestamps: List[str]
median: List[float]
quantiles: Dict[str, List[float]]
class AnomalyDetectionRequest(BaseModel):
context: UnivariateSeries
recent_observed: List[float]
prediction_length: int = 7
quantile_low: float = 0.05
quantile_high: float = 0.95
class AnomalyPoint(BaseModel):
index: int
value: float
predicted_median: float
lower: float
upper: float
is_anomaly: bool
class AnomalyDetectionResponse(BaseModel):
anomalies: List[AnomalyPoint]
class BacktestRequest(BaseModel):
series: UnivariateSeries
prediction_length: int = 7
test_length: int = 28
class BacktestMetrics(BaseModel):
mae: float
mape: float
rmse: float
class BacktestResponse(BaseModel):
metrics: BacktestMetrics
forecast_median: List[float]
forecast_timestamps: List[str]
actuals: List[float]
# =========================
# Funci贸n auxiliar para llamar a HF Inference
# =========================
def call_chronos_inference(series: List[float], prediction_length: int) -> Dict:
"""
Llama a la API de Hugging Face Inference para Chronos.
Retorna un diccionario con las predicciones.
"""
if client is None:
raise HTTPException(
status_code=503,
detail="HF_TOKEN no configurado. Contacta al administrador del servicio."
)
try:
# Intentar usando el endpoint espec铆fico de time series
import requests
url = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {
"inputs": series,
"parameters": {
"prediction_length": prediction_length,
"num_samples": 100 # Para obtener cuantiles
}
}
response = requests.post(url, headers=headers, json=payload, timeout=60)
if response.status_code == 503:
raise HTTPException(
status_code=503,
detail="El modelo est谩 cargando. Por favor, intenta de nuevo en 30-60 segundos."
)
elif response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"Error de la API de HuggingFace: {response.text}"
)
result = response.json()
return result
except requests.exceptions.Timeout:
raise HTTPException(
status_code=504,
detail="Timeout al comunicarse con HuggingFace API. El modelo puede estar cargando."
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error inesperado: {str(e)}"
)
def process_chronos_output(raw_output: Dict, prediction_length: int) -> Dict:
"""
Procesa la salida de Chronos para extraer mediana y cuantiles.
"""
# La API de Chronos puede devolver diferentes formatos
# Intentamos adaptarnos a ellos
if isinstance(raw_output, list):
# Si es una lista de valores, asumimos que es la predicci贸n media
median = raw_output[:prediction_length]
return {
"median": median,
"quantiles": {
"0.1": median, # Sin cuantiles, usar median
"0.5": median,
"0.9": median
}
}
# Si tiene estructura m谩s compleja, intentar extraer
if "forecast" in raw_output:
forecast = raw_output["forecast"]
if "median" in forecast:
median = forecast["median"][:prediction_length]
else:
median = forecast.get("mean", [0] * prediction_length)[:prediction_length]
quantiles = forecast.get("quantiles", {})
return {
"median": median,
"quantiles": quantiles
}
# Formato por defecto
return {
"median": [0] * prediction_length,
"quantiles": {
"0.1": [0] * prediction_length,
"0.5": [0] * prediction_length,
"0.9": [0] * prediction_length
}
}
# =========================
# Endpoints
# =========================
@app.get("/")
def root():
"""Informaci贸n b谩sica de la API"""
return {
"name": "Chronos-2 Forecasting API",
"version": "1.0.0",
"model": MODEL_ID,
"status": "running",
"docs": "/docs",
"health": "/health"
}
@app.get("/health")
def health():
"""Health check del servicio"""
return {
"status": "ok" if HF_TOKEN else "warning",
"model_id": MODEL_ID,
"hf_token_configured": HF_TOKEN is not None,
"message": "Ready" if HF_TOKEN else "HF_TOKEN not configured"
}
@app.post("/forecast_univariate", response_model=ForecastUnivariateResponse)
def forecast_univariate(req: ForecastUnivariateRequest):
"""
Pron贸stico para una serie temporal univariada.
Compatible con el Excel Add-in.
"""
values = req.series.values
n = len(values)
if n == 0:
raise HTTPException(status_code=400, detail="La serie no puede estar vac铆a.")
if n < 3:
raise HTTPException(
status_code=400,
detail="La serie debe tener al menos 3 puntos hist贸ricos."
)
# Llamar a la API de HuggingFace
raw_output = call_chronos_inference(values, req.prediction_length)
# Procesar la salida
processed = process_chronos_output(raw_output, req.prediction_length)
# Generar timestamps
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
return ForecastUnivariateResponse(
timestamps=timestamps,
median=processed["median"],
quantiles=processed["quantiles"]
)
@app.post("/detect_anomalies", response_model=AnomalyDetectionResponse)
def detect_anomalies(req: AnomalyDetectionRequest):
"""
Detecta anomal铆as comparando valores observados con predicciones.
"""
n_hist = len(req.context.values)
if n_hist == 0:
raise HTTPException(status_code=400, detail="El contexto no puede estar vac铆o.")
if len(req.recent_observed) != req.prediction_length:
raise HTTPException(
status_code=400,
detail="recent_observed debe tener la misma longitud que prediction_length."
)
# Hacer predicci贸n
raw_output = call_chronos_inference(req.context.values, req.prediction_length)
processed = process_chronos_output(raw_output, req.prediction_length)
# Comparar con valores observados
anomalies: List[AnomalyPoint] = []
median = processed["median"]
# Intentar obtener cuantiles o usar aproximaciones
q_low = processed["quantiles"].get(str(req.quantile_low), median)
q_high = processed["quantiles"].get(str(req.quantile_high), median)
for i, obs in enumerate(req.recent_observed):
if i < len(median):
lower = q_low[i] if i < len(q_low) else median[i] * 0.8
upper = q_high[i] if i < len(q_high) else median[i] * 1.2
predicted = median[i]
is_anom = (obs < lower) or (obs > upper)
anomalies.append(
AnomalyPoint(
index=i,
value=obs,
predicted_median=predicted,
lower=lower,
upper=upper,
is_anomaly=is_anom,
)
)
return AnomalyDetectionResponse(anomalies=anomalies)
@app.post("/backtest_simple", response_model=BacktestResponse)
def backtest_simple(req: BacktestRequest):
"""
Backtesting simple: divide la serie en train/test y eval煤a m茅tricas.
"""
values = np.array(req.series.values, dtype=float)
n = len(values)
if n <= req.test_length:
raise HTTPException(
status_code=400,
detail="La serie debe ser m谩s larga que test_length."
)
# Dividir en train/test
train = values[: n - req.test_length].tolist()
test = values[n - req.test_length :].tolist()
# Hacer predicci贸n
raw_output = call_chronos_inference(train, req.test_length)
processed = process_chronos_output(raw_output, req.test_length)
forecast = np.array(processed["median"], dtype=float)
test_arr = np.array(test, dtype=float)
# Calcular m茅tricas
mae = float(np.mean(np.abs(test_arr - forecast)))
rmse = float(np.sqrt(np.mean((test_arr - forecast) ** 2)))
eps = 1e-8
mape = float(np.mean(np.abs((test_arr - forecast) / (test_arr + eps)))) * 100.0
timestamps = [f"test_t{i+1}" for i in range(req.test_length)]
metrics = BacktestMetrics(mae=mae, mape=mape, rmse=rmse)
return BacktestResponse(
metrics=metrics,
forecast_median=forecast.tolist(),
forecast_timestamps=timestamps,
actuals=test,
)
# =========================
# Endpoints simplificados para testing
# =========================
@app.post("/simple_forecast")
def simple_forecast(series: List[float], prediction_length: int = 7):
"""
Endpoint simplificado para testing r谩pido.
"""
if not series:
raise HTTPException(status_code=400, detail="Serie vac铆a")
raw_output = call_chronos_inference(series, prediction_length)
processed = process_chronos_output(raw_output, prediction_length)
return {
"input_series": series,
"prediction_length": prediction_length,
"forecast": processed["median"],
"model": MODEL_ID
}
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|