Spaces:
Build error
Build error
Initial deployment: Chronos-2 Excel Forecasting API
Browse files- .gitignore +6 -0
- Dockerfile +42 -0
- INSTRUCTIONS.md +35 -0
- README.md +189 -4
- app/__init__.py +0 -0
- app/main.py +395 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
.env
|
| 4 |
+
.venv/
|
| 5 |
+
*.log
|
| 6 |
+
.cache/
|
Dockerfile
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dockerfile optimizado para HuggingFace Spaces
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
# Variables de entorno
|
| 5 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 6 |
+
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
+
PORT=7860
|
| 8 |
+
|
| 9 |
+
# Directorio de trabajo
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
# Instalar dependencias del sistema
|
| 13 |
+
RUN apt-get update && \
|
| 14 |
+
apt-get install -y --no-install-recommends \
|
| 15 |
+
build-essential \
|
| 16 |
+
curl \
|
| 17 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 18 |
+
|
| 19 |
+
# Copiar requirements
|
| 20 |
+
COPY requirements.txt .
|
| 21 |
+
|
| 22 |
+
# Instalar dependencias Python
|
| 23 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 24 |
+
pip install --no-cache-dir -r requirements.txt
|
| 25 |
+
|
| 26 |
+
# Copiar código de la aplicación
|
| 27 |
+
COPY app/ ./app/
|
| 28 |
+
|
| 29 |
+
# Crear usuario no-root
|
| 30 |
+
RUN useradd -m -u 1000 user && \
|
| 31 |
+
chown -R user:user /app
|
| 32 |
+
USER user
|
| 33 |
+
|
| 34 |
+
# Exponer puerto (HF Spaces usa 7860 por defecto)
|
| 35 |
+
EXPOSE 7860
|
| 36 |
+
|
| 37 |
+
# Health check
|
| 38 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
|
| 39 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 40 |
+
|
| 41 |
+
# Comando de inicio
|
| 42 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
INSTRUCTIONS.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Instrucciones de Despliegue
|
| 2 |
+
|
| 3 |
+
## Archivos listos para subir a HuggingFace Spaces
|
| 4 |
+
|
| 5 |
+
Este directorio contiene todos los archivos necesarios para desplegar en HF Spaces.
|
| 6 |
+
|
| 7 |
+
### Pasos:
|
| 8 |
+
|
| 9 |
+
1. **Crear Space en HuggingFace**:
|
| 10 |
+
- Ve a: https://huggingface.co/new-space
|
| 11 |
+
- SDK: **Docker**
|
| 12 |
+
- Hardware: CPU basic (gratis)
|
| 13 |
+
|
| 14 |
+
2. **Configurar HF_TOKEN**:
|
| 15 |
+
- Settings → Variables and secrets
|
| 16 |
+
- Nombre: `HF_TOKEN`
|
| 17 |
+
- Valor: tu token de HuggingFace
|
| 18 |
+
- Marcar como Secret
|
| 19 |
+
|
| 20 |
+
3. **Subir archivos**:
|
| 21 |
+
```bash
|
| 22 |
+
git clone https://huggingface.co/spaces/TU-USUARIO/TU-SPACE
|
| 23 |
+
cd TU-SPACE
|
| 24 |
+
cp -r ../hf_space_ready/* .
|
| 25 |
+
git add .
|
| 26 |
+
git commit -m "Initial deployment"
|
| 27 |
+
git push
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
4. **Verificar**:
|
| 31 |
+
```bash
|
| 32 |
+
curl https://TU-USUARIO-TU-SPACE.hf.space/health
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
¡Listo! 🚀
|
README.md
CHANGED
|
@@ -1,10 +1,195 @@
|
|
| 1 |
---
|
| 2 |
-
title: Chronos2 Excel Forecasting
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
|
|
|
| 7 |
pinned: false
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Chronos2 Excel Forecasting API
|
| 3 |
+
emoji: 📊
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: docker
|
| 7 |
+
app_port: 7860
|
| 8 |
pinned: false
|
| 9 |
+
license: mit
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# 📊 Chronos2 Excel Forecasting API
|
| 13 |
+
|
| 14 |
+
API de pronósticos con IA para Microsoft Excel usando [Amazon Chronos-2](https://huggingface.co/amazon/chronos-t5-large).
|
| 15 |
+
|
| 16 |
+
🔗 **Úsalo directamente desde Excel** con nuestro Office Add-in
|
| 17 |
+
|
| 18 |
+
## 🚀 Características
|
| 19 |
+
|
| 20 |
+
- ✅ **Pronósticos univariados**: Series temporales simples
|
| 21 |
+
- ✅ **Detección de anomalías**: Identifica valores atípicos automáticamente
|
| 22 |
+
- ✅ **Backtesting**: Valida la precisión de tus modelos
|
| 23 |
+
- ✅ **API REST con FastAPI**: Fácil integración
|
| 24 |
+
- ✅ **Documentación interactiva**: Swagger UI incluido
|
| 25 |
+
|
| 26 |
+
## 📖 Documentación
|
| 27 |
+
|
| 28 |
+
Accede a la documentación interactiva:
|
| 29 |
+
- **Swagger UI**: `/docs`
|
| 30 |
+
- **ReDoc**: `/redoc`
|
| 31 |
+
- **Health Check**: `/health`
|
| 32 |
+
|
| 33 |
+
## 🧪 Prueba Rápida
|
| 34 |
+
|
| 35 |
+
### Pronóstico Simple
|
| 36 |
+
|
| 37 |
+
```bash
|
| 38 |
+
curl -X POST https://YOUR-USERNAME-chronos2-excel-forecasting-api.hf.space/forecast_univariate \
|
| 39 |
+
-H "Content-Type: application/json" \
|
| 40 |
+
-d '{
|
| 41 |
+
"series": {"values": [100, 102, 105, 103, 108, 112, 115]},
|
| 42 |
+
"prediction_length": 3,
|
| 43 |
+
"freq": "D"
|
| 44 |
+
}'
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
**Respuesta esperada:**
|
| 48 |
+
```json
|
| 49 |
+
{
|
| 50 |
+
"timestamps": ["t+1", "t+2", "t+3"],
|
| 51 |
+
"median": [117.5, 119.2, 121.0],
|
| 52 |
+
"quantiles": {
|
| 53 |
+
"0.1": [112.3, 113.8, 115.5],
|
| 54 |
+
"0.5": [117.5, 119.2, 121.0],
|
| 55 |
+
"0.9": [122.7, 124.6, 126.5]
|
| 56 |
+
}
|
| 57 |
+
}
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### Detección de Anomalías
|
| 61 |
+
|
| 62 |
+
```bash
|
| 63 |
+
curl -X POST https://YOUR-USERNAME-chronos2-excel-forecasting-api.hf.space/detect_anomalies \
|
| 64 |
+
-H "Content-Type: application/json" \
|
| 65 |
+
-d '{
|
| 66 |
+
"context": {"values": [100, 102, 105, 103, 108]},
|
| 67 |
+
"recent_observed": [107, 200, 106],
|
| 68 |
+
"prediction_length": 3
|
| 69 |
+
}'
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Backtesting
|
| 73 |
+
|
| 74 |
+
```bash
|
| 75 |
+
curl -X POST https://YOUR-USERNAME-chronos2-excel-forecasting-api.hf.space/backtest_simple \
|
| 76 |
+
-H "Content-Type: application/json" \
|
| 77 |
+
-d '{
|
| 78 |
+
"series": {"values": [100, 102, 105, 103, 108, 112, 115, 118, 120, 122, 125, 128]},
|
| 79 |
+
"prediction_length": 7,
|
| 80 |
+
"test_length": 4
|
| 81 |
+
}'
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
## 🔗 Endpoints Disponibles
|
| 85 |
+
|
| 86 |
+
| Endpoint | Método | Descripción |
|
| 87 |
+
|----------|--------|-------------|
|
| 88 |
+
| `/` | GET | Información de la API |
|
| 89 |
+
| `/health` | GET | Health check del servicio |
|
| 90 |
+
| `/docs` | GET | Documentación Swagger |
|
| 91 |
+
| `/forecast_univariate` | POST | Pronóstico de serie simple |
|
| 92 |
+
| `/detect_anomalies` | POST | Detectar valores atípicos |
|
| 93 |
+
| `/backtest_simple` | POST | Validar precisión del modelo |
|
| 94 |
+
| `/simple_forecast` | POST | Pronóstico rápido (testing) |
|
| 95 |
+
|
| 96 |
+
## 💻 Uso con Excel
|
| 97 |
+
|
| 98 |
+
Este API funciona perfectamente con nuestro **Office Add-in para Excel**:
|
| 99 |
+
|
| 100 |
+
1. Descarga el Add-in desde [GitHub](https://github.com/tu-usuario/chronos2-server)
|
| 101 |
+
2. Configura la URL de este Space en el Add-in
|
| 102 |
+
3. ¡Realiza pronósticos directamente desde tus hojas de cálculo!
|
| 103 |
+
|
| 104 |
+
### Ejemplo en Excel
|
| 105 |
+
|
| 106 |
+
```javascript
|
| 107 |
+
// En el Excel Add-in, configura:
|
| 108 |
+
const API_BASE_URL = 'https://YOUR-USERNAME-chronos2-excel-forecasting-api.hf.space';
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
## 🛠️ Tecnologías
|
| 112 |
+
|
| 113 |
+
- **Modelo**: [Amazon Chronos-2 T5-Large](https://huggingface.co/amazon/chronos-t5-large)
|
| 114 |
+
- **Framework**: [FastAPI](https://fastapi.tiangolo.com/)
|
| 115 |
+
- **Inference**: [Hugging Face Inference API](https://huggingface.co/docs/api-inference)
|
| 116 |
+
- **Deployment**: Hugging Face Spaces (Docker)
|
| 117 |
+
|
| 118 |
+
## 📊 Casos de Uso
|
| 119 |
+
|
| 120 |
+
- 📈 **Ventas**: Predice demanda futura de productos
|
| 121 |
+
- 💰 **Finanzas**: Proyecta ingresos y gastos
|
| 122 |
+
- 📦 **Inventario**: Optimiza stock y reposición
|
| 123 |
+
- 🌡️ **Sensores**: Anticipa valores de sensores IoT
|
| 124 |
+
- 🏪 **Retail**: Planifica recursos y personal
|
| 125 |
+
|
| 126 |
+
## ⚙️ Configuración
|
| 127 |
+
|
| 128 |
+
### Variables de Entorno
|
| 129 |
+
|
| 130 |
+
Para desplegar tu propia instancia, configura:
|
| 131 |
+
|
| 132 |
+
- `HF_TOKEN`: Tu token de Hugging Face (requerido)
|
| 133 |
+
- `CHRONOS_MODEL_ID`: ID del modelo (default: `amazon/chronos-t5-large`)
|
| 134 |
+
- `PORT`: Puerto del servidor (default: `7860`)
|
| 135 |
+
|
| 136 |
+
### Crear tu propio Space
|
| 137 |
+
|
| 138 |
+
1. Fork este repositorio
|
| 139 |
+
2. Crea un nuevo Space en Hugging Face
|
| 140 |
+
3. Selecciona **Docker** como SDK
|
| 141 |
+
4. Conecta tu repositorio
|
| 142 |
+
5. Configura `HF_TOKEN` en los Secrets del Space
|
| 143 |
+
6. ¡Listo!
|
| 144 |
+
|
| 145 |
+
## 🔒 Seguridad
|
| 146 |
+
|
| 147 |
+
- ✅ CORS configurado para orígenes permitidos
|
| 148 |
+
- ✅ Validación de entrada con Pydantic
|
| 149 |
+
- ✅ Rate limiting en HuggingFace Inference API
|
| 150 |
+
- ✅ Timeouts configurados para evitar bloqueos
|
| 151 |
+
|
| 152 |
+
## 📚 Recursos
|
| 153 |
+
|
| 154 |
+
- [Documentación de Chronos-2](https://huggingface.co/amazon/chronos-t5-large)
|
| 155 |
+
- [API de HuggingFace Inference](https://huggingface.co/docs/api-inference)
|
| 156 |
+
- [FastAPI Docs](https://fastapi.tiangolo.com/)
|
| 157 |
+
- [Tutorial de Office Add-ins](https://docs.microsoft.com/en-us/office/dev/add-ins/)
|
| 158 |
+
|
| 159 |
+
## 🐛 Solución de Problemas
|
| 160 |
+
|
| 161 |
+
### "Model is loading"
|
| 162 |
+
|
| 163 |
+
La primera request puede tardar 30-60 segundos mientras el modelo se carga. Reintenta después.
|
| 164 |
+
|
| 165 |
+
### "HF_TOKEN not configured"
|
| 166 |
+
|
| 167 |
+
Asegúrate de configurar `HF_TOKEN` en los Secrets de tu Space.
|
| 168 |
+
|
| 169 |
+
### Errores de timeout
|
| 170 |
+
|
| 171 |
+
El modelo puede estar frío. Espera unos segundos y reintenta.
|
| 172 |
+
|
| 173 |
+
## 📝 Licencia
|
| 174 |
+
|
| 175 |
+
MIT License - Ver [LICENSE](LICENSE) para más detalles.
|
| 176 |
+
|
| 177 |
+
## 🤝 Contribuir
|
| 178 |
+
|
| 179 |
+
¿Quieres mejorar este proyecto?
|
| 180 |
+
|
| 181 |
+
1. Fork el repositorio
|
| 182 |
+
2. Crea una branch para tu feature (`git checkout -b feature/amazing`)
|
| 183 |
+
3. Commit tus cambios (`git commit -m 'Add amazing feature'`)
|
| 184 |
+
4. Push a la branch (`git push origin feature/amazing`)
|
| 185 |
+
5. Abre un Pull Request
|
| 186 |
+
|
| 187 |
+
## 📧 Contacto
|
| 188 |
+
|
| 189 |
+
¿Preguntas o sugerencias? Abre un [issue en GitHub](https://github.com/tu-usuario/chronos2-server/issues).
|
| 190 |
+
|
| 191 |
+
---
|
| 192 |
+
|
| 193 |
+
**Desarrollado con ❤️ usando [Chronos-2](https://huggingface.co/amazon/chronos-t5-large) y [FastAPI](https://fastapi.tiangolo.com/)**
|
| 194 |
+
|
| 195 |
+
🌟 Si te gusta este proyecto, ¡dale una estrella en [GitHub](https://github.com/tu-usuario/chronos2-server)!
|
app/__init__.py
ADDED
|
File without changes
|
app/main.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Dict, Optional
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from fastapi import FastAPI, HTTPException
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
from huggingface_hub import InferenceClient
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# =========================
|
| 14 |
+
# Configuración
|
| 15 |
+
# =========================
|
| 16 |
+
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
+
MODEL_ID = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-t5-large")
|
| 19 |
+
|
| 20 |
+
app = FastAPI(
|
| 21 |
+
title="Chronos-2 Forecasting API (HF Inference)",
|
| 22 |
+
description=(
|
| 23 |
+
"API de pronósticos usando Chronos-2 via Hugging Face Inference API. "
|
| 24 |
+
"Compatible con Excel Add-in."
|
| 25 |
+
),
|
| 26 |
+
version="1.0.0",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Configurar CORS
|
| 30 |
+
app.add_middleware(
|
| 31 |
+
CORSMiddleware,
|
| 32 |
+
allow_origins=["*"], # En producción, especificar dominios permitidos
|
| 33 |
+
allow_credentials=True,
|
| 34 |
+
allow_methods=["*"],
|
| 35 |
+
allow_headers=["*"],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Cliente de HF Inference
|
| 39 |
+
if not HF_TOKEN:
|
| 40 |
+
print("⚠️ WARNING: HF_TOKEN no configurado. La API puede no funcionar correctamente.")
|
| 41 |
+
print(" Configura HF_TOKEN en las variables de entorno del Space.")
|
| 42 |
+
client = None
|
| 43 |
+
else:
|
| 44 |
+
client = InferenceClient(token=HF_TOKEN)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# =========================
|
| 48 |
+
# Modelos Pydantic
|
| 49 |
+
# =========================
|
| 50 |
+
|
| 51 |
+
class UnivariateSeries(BaseModel):
|
| 52 |
+
values: List[float]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class ForecastUnivariateRequest(BaseModel):
|
| 56 |
+
series: UnivariateSeries
|
| 57 |
+
prediction_length: int = Field(7, description="Número de pasos a predecir")
|
| 58 |
+
quantile_levels: Optional[List[float]] = Field(
|
| 59 |
+
default=[0.1, 0.5, 0.9],
|
| 60 |
+
description="Cuantiles para intervalos de confianza"
|
| 61 |
+
)
|
| 62 |
+
freq: str = Field("D", description="Frecuencia temporal (D, W, M, etc.)")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ForecastUnivariateResponse(BaseModel):
|
| 66 |
+
timestamps: List[str]
|
| 67 |
+
median: List[float]
|
| 68 |
+
quantiles: Dict[str, List[float]]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class AnomalyDetectionRequest(BaseModel):
|
| 72 |
+
context: UnivariateSeries
|
| 73 |
+
recent_observed: List[float]
|
| 74 |
+
prediction_length: int = 7
|
| 75 |
+
quantile_low: float = 0.05
|
| 76 |
+
quantile_high: float = 0.95
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class AnomalyPoint(BaseModel):
|
| 80 |
+
index: int
|
| 81 |
+
value: float
|
| 82 |
+
predicted_median: float
|
| 83 |
+
lower: float
|
| 84 |
+
upper: float
|
| 85 |
+
is_anomaly: bool
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class AnomalyDetectionResponse(BaseModel):
|
| 89 |
+
anomalies: List[AnomalyPoint]
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class BacktestRequest(BaseModel):
|
| 93 |
+
series: UnivariateSeries
|
| 94 |
+
prediction_length: int = 7
|
| 95 |
+
test_length: int = 28
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class BacktestMetrics(BaseModel):
|
| 99 |
+
mae: float
|
| 100 |
+
mape: float
|
| 101 |
+
rmse: float
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class BacktestResponse(BaseModel):
|
| 105 |
+
metrics: BacktestMetrics
|
| 106 |
+
forecast_median: List[float]
|
| 107 |
+
forecast_timestamps: List[str]
|
| 108 |
+
actuals: List[float]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# =========================
|
| 112 |
+
# Función auxiliar para llamar a HF Inference
|
| 113 |
+
# =========================
|
| 114 |
+
|
| 115 |
+
def call_chronos_inference(series: List[float], prediction_length: int) -> Dict:
|
| 116 |
+
"""
|
| 117 |
+
Llama a la API de Hugging Face Inference para Chronos.
|
| 118 |
+
Retorna un diccionario con las predicciones.
|
| 119 |
+
"""
|
| 120 |
+
if client is None:
|
| 121 |
+
raise HTTPException(
|
| 122 |
+
status_code=503,
|
| 123 |
+
detail="HF_TOKEN no configurado. Contacta al administrador del servicio."
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
# Intentar usando el endpoint específico de time series
|
| 128 |
+
import requests
|
| 129 |
+
|
| 130 |
+
url = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
| 131 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 132 |
+
|
| 133 |
+
payload = {
|
| 134 |
+
"inputs": series,
|
| 135 |
+
"parameters": {
|
| 136 |
+
"prediction_length": prediction_length,
|
| 137 |
+
"num_samples": 100 # Para obtener cuantiles
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
response = requests.post(url, headers=headers, json=payload, timeout=60)
|
| 142 |
+
|
| 143 |
+
if response.status_code == 503:
|
| 144 |
+
raise HTTPException(
|
| 145 |
+
status_code=503,
|
| 146 |
+
detail="El modelo está cargando. Por favor, intenta de nuevo en 30-60 segundos."
|
| 147 |
+
)
|
| 148 |
+
elif response.status_code != 200:
|
| 149 |
+
raise HTTPException(
|
| 150 |
+
status_code=response.status_code,
|
| 151 |
+
detail=f"Error de la API de HuggingFace: {response.text}"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
result = response.json()
|
| 155 |
+
return result
|
| 156 |
+
|
| 157 |
+
except requests.exceptions.Timeout:
|
| 158 |
+
raise HTTPException(
|
| 159 |
+
status_code=504,
|
| 160 |
+
detail="Timeout al comunicarse con HuggingFace API. El modelo puede estar cargando."
|
| 161 |
+
)
|
| 162 |
+
except Exception as e:
|
| 163 |
+
raise HTTPException(
|
| 164 |
+
status_code=500,
|
| 165 |
+
detail=f"Error inesperado: {str(e)}"
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def process_chronos_output(raw_output: Dict, prediction_length: int) -> Dict:
|
| 170 |
+
"""
|
| 171 |
+
Procesa la salida de Chronos para extraer mediana y cuantiles.
|
| 172 |
+
"""
|
| 173 |
+
# La API de Chronos puede devolver diferentes formatos
|
| 174 |
+
# Intentamos adaptarnos a ellos
|
| 175 |
+
|
| 176 |
+
if isinstance(raw_output, list):
|
| 177 |
+
# Si es una lista de valores, asumimos que es la predicción media
|
| 178 |
+
median = raw_output[:prediction_length]
|
| 179 |
+
return {
|
| 180 |
+
"median": median,
|
| 181 |
+
"quantiles": {
|
| 182 |
+
"0.1": median, # Sin cuantiles, usar median
|
| 183 |
+
"0.5": median,
|
| 184 |
+
"0.9": median
|
| 185 |
+
}
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
# Si tiene estructura más compleja, intentar extraer
|
| 189 |
+
if "forecast" in raw_output:
|
| 190 |
+
forecast = raw_output["forecast"]
|
| 191 |
+
if "median" in forecast:
|
| 192 |
+
median = forecast["median"][:prediction_length]
|
| 193 |
+
else:
|
| 194 |
+
median = forecast.get("mean", [0] * prediction_length)[:prediction_length]
|
| 195 |
+
|
| 196 |
+
quantiles = forecast.get("quantiles", {})
|
| 197 |
+
return {
|
| 198 |
+
"median": median,
|
| 199 |
+
"quantiles": quantiles
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
# Formato por defecto
|
| 203 |
+
return {
|
| 204 |
+
"median": [0] * prediction_length,
|
| 205 |
+
"quantiles": {
|
| 206 |
+
"0.1": [0] * prediction_length,
|
| 207 |
+
"0.5": [0] * prediction_length,
|
| 208 |
+
"0.9": [0] * prediction_length
|
| 209 |
+
}
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# =========================
|
| 214 |
+
# Endpoints
|
| 215 |
+
# =========================
|
| 216 |
+
|
| 217 |
+
@app.get("/")
|
| 218 |
+
def root():
|
| 219 |
+
"""Información básica de la API"""
|
| 220 |
+
return {
|
| 221 |
+
"name": "Chronos-2 Forecasting API",
|
| 222 |
+
"version": "1.0.0",
|
| 223 |
+
"model": MODEL_ID,
|
| 224 |
+
"status": "running",
|
| 225 |
+
"docs": "/docs",
|
| 226 |
+
"health": "/health"
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@app.get("/health")
|
| 231 |
+
def health():
|
| 232 |
+
"""Health check del servicio"""
|
| 233 |
+
return {
|
| 234 |
+
"status": "ok" if HF_TOKEN else "warning",
|
| 235 |
+
"model_id": MODEL_ID,
|
| 236 |
+
"hf_token_configured": HF_TOKEN is not None,
|
| 237 |
+
"message": "Ready" if HF_TOKEN else "HF_TOKEN not configured"
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
@app.post("/forecast_univariate", response_model=ForecastUnivariateResponse)
|
| 242 |
+
def forecast_univariate(req: ForecastUnivariateRequest):
|
| 243 |
+
"""
|
| 244 |
+
Pronóstico para una serie temporal univariada.
|
| 245 |
+
|
| 246 |
+
Compatible con el Excel Add-in.
|
| 247 |
+
"""
|
| 248 |
+
values = req.series.values
|
| 249 |
+
n = len(values)
|
| 250 |
+
|
| 251 |
+
if n == 0:
|
| 252 |
+
raise HTTPException(status_code=400, detail="La serie no puede estar vacía.")
|
| 253 |
+
|
| 254 |
+
if n < 3:
|
| 255 |
+
raise HTTPException(
|
| 256 |
+
status_code=400,
|
| 257 |
+
detail="La serie debe tener al menos 3 puntos históricos."
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Llamar a la API de HuggingFace
|
| 261 |
+
raw_output = call_chronos_inference(values, req.prediction_length)
|
| 262 |
+
|
| 263 |
+
# Procesar la salida
|
| 264 |
+
processed = process_chronos_output(raw_output, req.prediction_length)
|
| 265 |
+
|
| 266 |
+
# Generar timestamps
|
| 267 |
+
timestamps = [f"t+{i+1}" for i in range(req.prediction_length)]
|
| 268 |
+
|
| 269 |
+
return ForecastUnivariateResponse(
|
| 270 |
+
timestamps=timestamps,
|
| 271 |
+
median=processed["median"],
|
| 272 |
+
quantiles=processed["quantiles"]
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
@app.post("/detect_anomalies", response_model=AnomalyDetectionResponse)
|
| 277 |
+
def detect_anomalies(req: AnomalyDetectionRequest):
|
| 278 |
+
"""
|
| 279 |
+
Detecta anomalías comparando valores observados con predicciones.
|
| 280 |
+
"""
|
| 281 |
+
n_hist = len(req.context.values)
|
| 282 |
+
|
| 283 |
+
if n_hist == 0:
|
| 284 |
+
raise HTTPException(status_code=400, detail="El contexto no puede estar vacío.")
|
| 285 |
+
|
| 286 |
+
if len(req.recent_observed) != req.prediction_length:
|
| 287 |
+
raise HTTPException(
|
| 288 |
+
status_code=400,
|
| 289 |
+
detail="recent_observed debe tener la misma longitud que prediction_length."
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# Hacer predicción
|
| 293 |
+
raw_output = call_chronos_inference(req.context.values, req.prediction_length)
|
| 294 |
+
processed = process_chronos_output(raw_output, req.prediction_length)
|
| 295 |
+
|
| 296 |
+
# Comparar con valores observados
|
| 297 |
+
anomalies: List[AnomalyPoint] = []
|
| 298 |
+
|
| 299 |
+
median = processed["median"]
|
| 300 |
+
# Intentar obtener cuantiles o usar aproximaciones
|
| 301 |
+
q_low = processed["quantiles"].get(str(req.quantile_low), median)
|
| 302 |
+
q_high = processed["quantiles"].get(str(req.quantile_high), median)
|
| 303 |
+
|
| 304 |
+
for i, obs in enumerate(req.recent_observed):
|
| 305 |
+
if i < len(median):
|
| 306 |
+
lower = q_low[i] if i < len(q_low) else median[i] * 0.8
|
| 307 |
+
upper = q_high[i] if i < len(q_high) else median[i] * 1.2
|
| 308 |
+
predicted = median[i]
|
| 309 |
+
is_anom = (obs < lower) or (obs > upper)
|
| 310 |
+
|
| 311 |
+
anomalies.append(
|
| 312 |
+
AnomalyPoint(
|
| 313 |
+
index=i,
|
| 314 |
+
value=obs,
|
| 315 |
+
predicted_median=predicted,
|
| 316 |
+
lower=lower,
|
| 317 |
+
upper=upper,
|
| 318 |
+
is_anomaly=is_anom,
|
| 319 |
+
)
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
return AnomalyDetectionResponse(anomalies=anomalies)
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
@app.post("/backtest_simple", response_model=BacktestResponse)
|
| 326 |
+
def backtest_simple(req: BacktestRequest):
|
| 327 |
+
"""
|
| 328 |
+
Backtesting simple: divide la serie en train/test y evalúa métricas.
|
| 329 |
+
"""
|
| 330 |
+
values = np.array(req.series.values, dtype=float)
|
| 331 |
+
n = len(values)
|
| 332 |
+
|
| 333 |
+
if n <= req.test_length:
|
| 334 |
+
raise HTTPException(
|
| 335 |
+
status_code=400,
|
| 336 |
+
detail="La serie debe ser más larga que test_length."
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Dividir en train/test
|
| 340 |
+
train = values[: n - req.test_length].tolist()
|
| 341 |
+
test = values[n - req.test_length :].tolist()
|
| 342 |
+
|
| 343 |
+
# Hacer predicción
|
| 344 |
+
raw_output = call_chronos_inference(train, req.test_length)
|
| 345 |
+
processed = process_chronos_output(raw_output, req.test_length)
|
| 346 |
+
|
| 347 |
+
forecast = np.array(processed["median"], dtype=float)
|
| 348 |
+
test_arr = np.array(test, dtype=float)
|
| 349 |
+
|
| 350 |
+
# Calcular métricas
|
| 351 |
+
mae = float(np.mean(np.abs(test_arr - forecast)))
|
| 352 |
+
rmse = float(np.sqrt(np.mean((test_arr - forecast) ** 2)))
|
| 353 |
+
|
| 354 |
+
eps = 1e-8
|
| 355 |
+
mape = float(np.mean(np.abs((test_arr - forecast) / (test_arr + eps)))) * 100.0
|
| 356 |
+
|
| 357 |
+
timestamps = [f"test_t{i+1}" for i in range(req.test_length)]
|
| 358 |
+
|
| 359 |
+
metrics = BacktestMetrics(mae=mae, mape=mape, rmse=rmse)
|
| 360 |
+
|
| 361 |
+
return BacktestResponse(
|
| 362 |
+
metrics=metrics,
|
| 363 |
+
forecast_median=forecast.tolist(),
|
| 364 |
+
forecast_timestamps=timestamps,
|
| 365 |
+
actuals=test,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
# =========================
|
| 370 |
+
# Endpoints simplificados para testing
|
| 371 |
+
# =========================
|
| 372 |
+
|
| 373 |
+
@app.post("/simple_forecast")
|
| 374 |
+
def simple_forecast(series: List[float], prediction_length: int = 7):
|
| 375 |
+
"""
|
| 376 |
+
Endpoint simplificado para testing rápido.
|
| 377 |
+
"""
|
| 378 |
+
if not series:
|
| 379 |
+
raise HTTPException(status_code=400, detail="Serie vacía")
|
| 380 |
+
|
| 381 |
+
raw_output = call_chronos_inference(series, prediction_length)
|
| 382 |
+
processed = process_chronos_output(raw_output, prediction_length)
|
| 383 |
+
|
| 384 |
+
return {
|
| 385 |
+
"input_series": series,
|
| 386 |
+
"prediction_length": prediction_length,
|
| 387 |
+
"forecast": processed["median"],
|
| 388 |
+
"model": MODEL_ID
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
if __name__ == "__main__":
|
| 393 |
+
import uvicorn
|
| 394 |
+
port = int(os.getenv("PORT", 7860))
|
| 395 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi>=0.104.0
|
| 2 |
+
uvicorn[standard]>=0.24.0
|
| 3 |
+
pandas>=2.0.0
|
| 4 |
+
numpy>=1.24.0
|
| 5 |
+
huggingface_hub>=0.20.0
|
| 6 |
+
pydantic>=2.0.0
|
| 7 |
+
python-dotenv>=1.0.0
|