Spaces:
Sleeping
Sleeping
| # Configuration Options | |
| This document discusses the various configuration options available for Aurora AI. | |
| ## Overview | |
| Aurora AI provides a comprehensive configuration framework supporting multi-tenancy, enterprise-grade security, and extensible integration patterns. The system employs a hierarchical configuration model with environment-specific overrides, schema validation, and runtime hot-reloading capabilities. | |
| ## Core Configuration Architecture | |
| ### Configuration Hierarchy | |
| Aurora AI implements a cascading configuration system with the following precedence order: | |
| 1. **Runtime overrides** - Programmatic configuration via API | |
| 2. **Environment variables** - System-level configuration with `AURORA_` prefix | |
| 3. **Configuration files** - YAML/JSON/TOML format files | |
| 4. **Default values** - Embedded fallback configuration | |
| ### Configuration File Structure | |
| ```yaml | |
| aurora: | |
| engine: | |
| inference_backend: "transformers" | |
| model_path: "/models/aurora-v3" | |
| device_map: "auto" | |
| quantization: | |
| enabled: true | |
| bits: 4 | |
| scheme: "gptq" | |
| runtime: | |
| max_concurrent_requests: 128 | |
| request_timeout_ms: 30000 | |
| graceful_shutdown_timeout: 60 | |
| ``` | |
| ## Model Configuration | |
| ### Inference Engine Parameters | |
| - **`model_path`**: Filesystem path or Hugging Face model identifier | |
| - **`device_map`**: Hardware allocation strategy (`auto`, `balanced`, `sequential`, or custom JSON mapping) | |
| - **`torch_dtype`**: Precision mode (`float32`, `float16`, `bfloat16`, `int8`, `int4`) | |
| - **`attention_implementation`**: Mechanism selection (`flash_attention_2`, `sdpa`, `eager`) | |
| - **`rope_scaling`**: Rotary Position Embedding interpolation configuration | |
| - **`kv_cache_dtype`**: Key-value cache quantization type | |
| ### Quantization Strategies | |
| Aurora AI supports multiple quantization backends: | |
| - **GPTQ**: 4-bit grouped quantization with calibration datasets | |
| - **AWQ**: Activation-aware weight quantization | |
| - **GGUF**: CPU-optimized quantization format | |
| - **BitsAndBytes**: Dynamic 8-bit and 4-bit quantization | |
| ## API Configuration | |
| ### REST API Settings | |
| ```yaml | |
| api: | |
| host: "0.0.0.0" | |
| port: 8080 | |
| workers: 4 | |
| uvicorn: | |
| loop: "uvloop" | |
| http: "httptools" | |
| log_level: "info" | |
| cors: | |
| enabled: true | |
| origins: ["https://*.example.com"] | |
| allow_credentials: true | |
| rate_limiting: | |
| enabled: true | |
| requests_per_minute: 60 | |
| burst_size: 10 | |
| ``` | |
| ### Authentication & Authorization | |
| - **API Key Authentication**: Header-based (`X-API-Key`) or query parameter | |
| - **OAuth 2.0**: Support for Authorization Code and Client Credentials flows | |
| - **JWT Tokens**: RS256/ES256 signature verification with JWKS endpoints | |
| - **mTLS**: Mutual TLS authentication for service-to-service communication | |
| ## Integration Patterns | |
| ### Vector Database Integration | |
| Aurora AI integrates with enterprise vector stores: | |
| ```yaml | |
| vector_store: | |
| provider: "pinecone" # or "weaviate", "qdrant", "milvus", "chromadb" | |
| connection: | |
| api_key: "${PINECONE_API_KEY}" | |
| environment: "us-west1-gcp" | |
| index_name: "aurora-embeddings" | |
| embedding: | |
| model: "text-embedding-3-large" | |
| dimensions: 3072 | |
| batch_size: 100 | |
| ``` | |
| ### Message Queue Integration | |
| Asynchronous processing via message brokers: | |
| - **RabbitMQ**: AMQP 0-9-1 protocol with exchange routing | |
| - **Apache Kafka**: High-throughput event streaming with consumer groups | |
| - **Redis Streams**: Lightweight pub/sub with consumer group support | |
| - **AWS SQS/SNS**: Cloud-native queue and notification services | |
| ### Observability Stack | |
| ```yaml | |
| observability: | |
| metrics: | |
| provider: "prometheus" | |
| port: 9090 | |
| path: "/metrics" | |
| tracing: | |
| provider: "opentelemetry" | |
| exporter: "otlp" | |
| endpoint: "http://jaeger:4317" | |
| sampling_rate: 0.1 | |
| logging: | |
| level: "INFO" | |
| format: "json" | |
| output: "stdout" | |
| ``` | |
| ## Memory Management | |
| ### Cache Configuration | |
| ```yaml | |
| cache: | |
| inference_cache: | |
| enabled: true | |
| backend: "redis" | |
| ttl_seconds: 3600 | |
| max_size_mb: 2048 | |
| prompt_cache: | |
| enabled: true | |
| strategy: "semantic_hash" | |
| similarity_threshold: 0.95 | |
| ``` | |
| ### Context Window Management | |
| - **Sliding Window**: Maintains fixed-size context with FIFO eviction | |
| - **Semantic Compression**: Entropy-based summarization for long contexts | |
| - **Hierarchical Attention**: Multi-level context representation | |
| - **External Memory**: Vector store-backed infinite context | |
| ## Distributed Deployment | |
| ### Kubernetes Configuration | |
| ```yaml | |
| deployment: | |
| replicas: 3 | |
| strategy: "RollingUpdate" | |
| resources: | |
| requests: | |
| cpu: "4000m" | |
| memory: "16Gi" | |
| nvidia.com/gpu: "1" | |
| limits: | |
| cpu: "8000m" | |
| memory: "32Gi" | |
| nvidia.com/gpu: "1" | |
| autoscaling: | |
| enabled: true | |
| min_replicas: 2 | |
| max_replicas: 10 | |
| target_cpu_utilization: 70 | |
| ``` | |
| ### Service Mesh Integration | |
| Aurora AI supports Istio, Linkerd, and Consul service mesh architectures with: | |
| - **Traffic management**: Weighted routing, circuit breaking, retries | |
| - **Security**: mTLS encryption, authorization policies | |
| - **Observability**: Distributed tracing, metrics aggregation | |
| ## Advanced Features | |
| ### Custom Plugin System | |
| ```yaml | |
| plugins: | |
| enabled: true | |
| plugin_path: "/opt/aurora/plugins" | |
| plugins: | |
| - name: "custom_tokenizer" | |
| module: "aurora.plugins.tokenizers" | |
| config: | |
| vocab_size: 65536 | |
| - name: "retrieval_augmentation" | |
| module: "aurora.plugins.rag" | |
| config: | |
| top_k: 5 | |
| rerank: true | |
| ``` | |
| ### Multi-Model Orchestration | |
| Configure model routing and ensemble strategies: | |
| - **Load-based routing**: Distribute requests based on model server load | |
| - **A/B testing**: Traffic splitting for model evaluation | |
| - **Cascade patterns**: Fallback to alternative models on failure | |
| - **Ensemble voting**: Aggregate predictions from multiple models | |
| ## Security Hardening | |
| - **Secrets management**: Integration with HashiCorp Vault, AWS Secrets Manager | |
| - **Network policies**: Zero-trust networking with pod security policies | |
| - **Input sanitization**: Prompt injection and jailbreak detection | |
| - **Output filtering**: PII redaction and content safety validation | |
| - **Audit logging**: Immutable logs with cryptographic verification |