DocsNavigatorMCP / docs /configuration.md
mackenzietechdocs's picture
adding files again
f639a6f
# Configuration Options
This document discusses the various configuration options available for Aurora AI.
## Overview
Aurora AI provides a comprehensive configuration framework supporting multi-tenancy, enterprise-grade security, and extensible integration patterns. The system employs a hierarchical configuration model with environment-specific overrides, schema validation, and runtime hot-reloading capabilities.
## Core Configuration Architecture
### Configuration Hierarchy
Aurora AI implements a cascading configuration system with the following precedence order:
1. **Runtime overrides** - Programmatic configuration via API
2. **Environment variables** - System-level configuration with `AURORA_` prefix
3. **Configuration files** - YAML/JSON/TOML format files
4. **Default values** - Embedded fallback configuration
### Configuration File Structure
```yaml
aurora:
engine:
inference_backend: "transformers"
model_path: "/models/aurora-v3"
device_map: "auto"
quantization:
enabled: true
bits: 4
scheme: "gptq"
runtime:
max_concurrent_requests: 128
request_timeout_ms: 30000
graceful_shutdown_timeout: 60
```
## Model Configuration
### Inference Engine Parameters
- **`model_path`**: Filesystem path or Hugging Face model identifier
- **`device_map`**: Hardware allocation strategy (`auto`, `balanced`, `sequential`, or custom JSON mapping)
- **`torch_dtype`**: Precision mode (`float32`, `float16`, `bfloat16`, `int8`, `int4`)
- **`attention_implementation`**: Mechanism selection (`flash_attention_2`, `sdpa`, `eager`)
- **`rope_scaling`**: Rotary Position Embedding interpolation configuration
- **`kv_cache_dtype`**: Key-value cache quantization type
### Quantization Strategies
Aurora AI supports multiple quantization backends:
- **GPTQ**: 4-bit grouped quantization with calibration datasets
- **AWQ**: Activation-aware weight quantization
- **GGUF**: CPU-optimized quantization format
- **BitsAndBytes**: Dynamic 8-bit and 4-bit quantization
## API Configuration
### REST API Settings
```yaml
api:
host: "0.0.0.0"
port: 8080
workers: 4
uvicorn:
loop: "uvloop"
http: "httptools"
log_level: "info"
cors:
enabled: true
origins: ["https://*.example.com"]
allow_credentials: true
rate_limiting:
enabled: true
requests_per_minute: 60
burst_size: 10
```
### Authentication & Authorization
- **API Key Authentication**: Header-based (`X-API-Key`) or query parameter
- **OAuth 2.0**: Support for Authorization Code and Client Credentials flows
- **JWT Tokens**: RS256/ES256 signature verification with JWKS endpoints
- **mTLS**: Mutual TLS authentication for service-to-service communication
## Integration Patterns
### Vector Database Integration
Aurora AI integrates with enterprise vector stores:
```yaml
vector_store:
provider: "pinecone" # or "weaviate", "qdrant", "milvus", "chromadb"
connection:
api_key: "${PINECONE_API_KEY}"
environment: "us-west1-gcp"
index_name: "aurora-embeddings"
embedding:
model: "text-embedding-3-large"
dimensions: 3072
batch_size: 100
```
### Message Queue Integration
Asynchronous processing via message brokers:
- **RabbitMQ**: AMQP 0-9-1 protocol with exchange routing
- **Apache Kafka**: High-throughput event streaming with consumer groups
- **Redis Streams**: Lightweight pub/sub with consumer group support
- **AWS SQS/SNS**: Cloud-native queue and notification services
### Observability Stack
```yaml
observability:
metrics:
provider: "prometheus"
port: 9090
path: "/metrics"
tracing:
provider: "opentelemetry"
exporter: "otlp"
endpoint: "http://jaeger:4317"
sampling_rate: 0.1
logging:
level: "INFO"
format: "json"
output: "stdout"
```
## Memory Management
### Cache Configuration
```yaml
cache:
inference_cache:
enabled: true
backend: "redis"
ttl_seconds: 3600
max_size_mb: 2048
prompt_cache:
enabled: true
strategy: "semantic_hash"
similarity_threshold: 0.95
```
### Context Window Management
- **Sliding Window**: Maintains fixed-size context with FIFO eviction
- **Semantic Compression**: Entropy-based summarization for long contexts
- **Hierarchical Attention**: Multi-level context representation
- **External Memory**: Vector store-backed infinite context
## Distributed Deployment
### Kubernetes Configuration
```yaml
deployment:
replicas: 3
strategy: "RollingUpdate"
resources:
requests:
cpu: "4000m"
memory: "16Gi"
nvidia.com/gpu: "1"
limits:
cpu: "8000m"
memory: "32Gi"
nvidia.com/gpu: "1"
autoscaling:
enabled: true
min_replicas: 2
max_replicas: 10
target_cpu_utilization: 70
```
### Service Mesh Integration
Aurora AI supports Istio, Linkerd, and Consul service mesh architectures with:
- **Traffic management**: Weighted routing, circuit breaking, retries
- **Security**: mTLS encryption, authorization policies
- **Observability**: Distributed tracing, metrics aggregation
## Advanced Features
### Custom Plugin System
```yaml
plugins:
enabled: true
plugin_path: "/opt/aurora/plugins"
plugins:
- name: "custom_tokenizer"
module: "aurora.plugins.tokenizers"
config:
vocab_size: 65536
- name: "retrieval_augmentation"
module: "aurora.plugins.rag"
config:
top_k: 5
rerank: true
```
### Multi-Model Orchestration
Configure model routing and ensemble strategies:
- **Load-based routing**: Distribute requests based on model server load
- **A/B testing**: Traffic splitting for model evaluation
- **Cascade patterns**: Fallback to alternative models on failure
- **Ensemble voting**: Aggregate predictions from multiple models
## Security Hardening
- **Secrets management**: Integration with HashiCorp Vault, AWS Secrets Manager
- **Network policies**: Zero-trust networking with pod security policies
- **Input sanitization**: Prompt injection and jailbreak detection
- **Output filtering**: PII redaction and content safety validation
- **Audit logging**: Immutable logs with cryptographic verification