Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 5 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
|
@@ -11,18 +10,16 @@ llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
| 11 |
groq_key = os.environ.get("GROQ_API_KEY")
|
| 12 |
mxbai_key = os.environ.get("MXBAI_API_KEY")
|
| 13 |
if not (llama_cloud_key and groq_key and mxbai_key):
|
| 14 |
-
raise ValueError(
|
| 15 |
-
"API Keys not found! Ensure they are passed to the Docker container."
|
| 16 |
-
)
|
| 17 |
|
| 18 |
-
#
|
| 19 |
llm_model_name = "llama-3.1-70b-versatile"
|
| 20 |
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
| 21 |
|
| 22 |
# Initialize the parser
|
| 23 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
| 24 |
|
| 25 |
-
# Define file extractor
|
| 26 |
file_extractor = {
|
| 27 |
".pdf": parser,
|
| 28 |
".docx": parser,
|
|
@@ -39,13 +36,15 @@ file_extractor = {
|
|
| 39 |
".svg": parser,
|
| 40 |
}
|
| 41 |
|
| 42 |
-
# Initialize
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# File processing function
|
| 51 |
def load_files(file_path: str):
|
|
@@ -57,35 +56,40 @@ def load_files(file_path: str):
|
|
| 57 |
if not any(file_path.endswith(ext) for ext in file_extractor):
|
| 58 |
return f"The parser can only parse the following file types: {valid_extensions}"
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Respond function
|
| 68 |
def respond(message, history):
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
# Use the preloaded LLM
|
| 71 |
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
| 72 |
streaming_response = query_engine.query(message)
|
| 73 |
partial_text = ""
|
| 74 |
for new_text in streaming_response.response_gen:
|
| 75 |
partial_text += new_text
|
| 76 |
-
# Yield an empty string to cleanup the message textbox and the updated conversation history
|
| 77 |
yield partial_text
|
| 78 |
-
except
|
| 79 |
-
|
| 80 |
-
yield "Please upload the file to begin chat."
|
| 81 |
-
|
| 82 |
|
| 83 |
# Clear function
|
| 84 |
def clear_state():
|
| 85 |
global vector_index
|
| 86 |
vector_index = None
|
| 87 |
-
return
|
| 88 |
-
|
| 89 |
|
| 90 |
# UI Setup
|
| 91 |
with gr.Blocks(
|
|
@@ -100,7 +104,9 @@ with gr.Blocks(
|
|
| 100 |
with gr.Row():
|
| 101 |
with gr.Column(scale=1):
|
| 102 |
file_input = gr.File(
|
| 103 |
-
file_count="single",
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
with gr.Row():
|
| 106 |
btn = gr.Button("Submit", variant="primary")
|
|
@@ -109,7 +115,7 @@ with gr.Blocks(
|
|
| 109 |
with gr.Column(scale=3):
|
| 110 |
chatbot = gr.ChatInterface(
|
| 111 |
fn=respond,
|
| 112 |
-
chatbot=gr.Chatbot(height=300),
|
| 113 |
theme="soft",
|
| 114 |
show_progress="full",
|
| 115 |
textbox=gr.Textbox(
|
|
@@ -121,10 +127,13 @@ with gr.Blocks(
|
|
| 121 |
# Set up Gradio interactions
|
| 122 |
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
| 123 |
clear.click(
|
| 124 |
-
fn=clear_state,
|
| 125 |
-
outputs=[file_input, output],
|
| 126 |
)
|
| 127 |
|
| 128 |
# Launch the demo
|
| 129 |
if __name__ == "__main__":
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 4 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
|
|
|
| 10 |
groq_key = os.environ.get("GROQ_API_KEY")
|
| 11 |
mxbai_key = os.environ.get("MXBAI_API_KEY")
|
| 12 |
if not (llama_cloud_key and groq_key and mxbai_key):
|
| 13 |
+
raise ValueError("API Keys not found! Ensure they are passed to the Docker container.")
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Model names
|
| 16 |
llm_model_name = "llama-3.1-70b-versatile"
|
| 17 |
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
| 18 |
|
| 19 |
# Initialize the parser
|
| 20 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
| 21 |
|
| 22 |
+
# Define file extractor
|
| 23 |
file_extractor = {
|
| 24 |
".pdf": parser,
|
| 25 |
".docx": parser,
|
|
|
|
| 36 |
".svg": parser,
|
| 37 |
}
|
| 38 |
|
| 39 |
+
# Initialize models with error handling
|
| 40 |
+
try:
|
| 41 |
+
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
| 42 |
+
llm = Groq(model=llm_model_name, api_key=groq_key)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
| 45 |
|
| 46 |
+
# Global variable for vector index
|
| 47 |
+
vector_index = None
|
| 48 |
|
| 49 |
# File processing function
|
| 50 |
def load_files(file_path: str):
|
|
|
|
| 56 |
if not any(file_path.endswith(ext) for ext in file_extractor):
|
| 57 |
return f"The parser can only parse the following file types: {valid_extensions}"
|
| 58 |
|
| 59 |
+
try:
|
| 60 |
+
document = SimpleDirectoryReader(
|
| 61 |
+
input_files=[file_path],
|
| 62 |
+
file_extractor=file_extractor
|
| 63 |
+
).load_data()
|
| 64 |
+
vector_index = VectorStoreIndex.from_documents(
|
| 65 |
+
document,
|
| 66 |
+
embed_model=embed_model
|
| 67 |
+
)
|
| 68 |
+
filename = os.path.basename(file_path)
|
| 69 |
+
return f"Ready to provide responses based on: {filename}"
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return f"Error processing file: {str(e)}"
|
| 72 |
|
| 73 |
# Respond function
|
| 74 |
def respond(message, history):
|
| 75 |
+
if not vector_index:
|
| 76 |
+
return "Please upload a file first."
|
| 77 |
+
|
| 78 |
try:
|
|
|
|
| 79 |
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
| 80 |
streaming_response = query_engine.query(message)
|
| 81 |
partial_text = ""
|
| 82 |
for new_text in streaming_response.response_gen:
|
| 83 |
partial_text += new_text
|
|
|
|
| 84 |
yield partial_text
|
| 85 |
+
except Exception as e:
|
| 86 |
+
yield f"Error processing query: {str(e)}"
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Clear function
|
| 89 |
def clear_state():
|
| 90 |
global vector_index
|
| 91 |
vector_index = None
|
| 92 |
+
return None, None, None
|
|
|
|
| 93 |
|
| 94 |
# UI Setup
|
| 95 |
with gr.Blocks(
|
|
|
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column(scale=1):
|
| 106 |
file_input = gr.File(
|
| 107 |
+
file_count="single",
|
| 108 |
+
type="filepath",
|
| 109 |
+
label="Upload Document"
|
| 110 |
)
|
| 111 |
with gr.Row():
|
| 112 |
btn = gr.Button("Submit", variant="primary")
|
|
|
|
| 115 |
with gr.Column(scale=3):
|
| 116 |
chatbot = gr.ChatInterface(
|
| 117 |
fn=respond,
|
| 118 |
+
chatbot=gr.Chatbot(height=300, type="messages"), # Fixed deprecated warning
|
| 119 |
theme="soft",
|
| 120 |
show_progress="full",
|
| 121 |
textbox=gr.Textbox(
|
|
|
|
| 127 |
# Set up Gradio interactions
|
| 128 |
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
| 129 |
clear.click(
|
| 130 |
+
fn=clear_state,
|
| 131 |
+
outputs=[file_input, output, chatbot],
|
| 132 |
)
|
| 133 |
|
| 134 |
# Launch the demo
|
| 135 |
if __name__ == "__main__":
|
| 136 |
+
try:
|
| 137 |
+
demo.launch()
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"Failed to launch application: {str(e)}")
|