Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,189 +1,130 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Doc-Q&A app (Gradio 5.x + Llama-Index 0.12.x, June 2025)
|
| 3 |
-
|
| 4 |
-
Key upgrades
|
| 5 |
-
------------
|
| 6 |
-
βͺ Gradio 5.34βnew event system (`upload`, `clear` etc.)
|
| 7 |
-
βͺ Llama-Index 0.12.42β`VectorStoreIndex.from_documents` signature unchanged
|
| 8 |
-
βͺ MixedbreadAIEmbedding 0.3.0 β supports `batch_size`, `timeout`
|
| 9 |
-
βͺ Tenacity for exponential-back-off when MXBAI returns 5xx / rate limits
|
| 10 |
-
"""
|
| 11 |
-
|
| 12 |
-
from __future__ import annotations
|
| 13 |
-
|
| 14 |
import os
|
| 15 |
-
from pathlib import Path
|
| 16 |
-
from typing import List
|
| 17 |
|
| 18 |
import gradio as gr
|
| 19 |
-
from tenacity import retry, wait_exponential, stop_after_attempt
|
| 20 |
-
from mixedbread_ai.core.api_error import ApiError
|
| 21 |
-
|
| 22 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 23 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
| 24 |
from llama_index.llms.groq import Groq
|
| 25 |
from llama_parse import LlamaParse
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
if not all([LLAMA_CLOUD_API_KEY, GROQ_API_KEY, MXBAI_API_KEY]):
|
| 35 |
-
raise EnvironmentError(
|
| 36 |
-
"LLAMA_CLOUD_API_KEY, GROQ_API_KEY and MXBAI_API_KEY must be set in the env."
|
| 37 |
)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
LLM_MODEL = "llama-3.1-70b-versatile" # Groqβs best for Q&A
|
| 43 |
-
EMBED_MODEL = "mixedbread-ai/mxbai-embed-large-v1" # 1024-dim
|
| 44 |
-
|
| 45 |
-
parser = LlamaParse(api_key=LLAMA_CLOUD_API_KEY, result_type="markdown")
|
| 46 |
-
|
| 47 |
-
SUPPORTED_EXTS = (
|
| 48 |
-
".pdf", ".docx", ".doc", ".txt", ".csv", ".xlsx",
|
| 49 |
-
".pptx", ".html", ".jpg", ".jpeg", ".png", ".webp", ".svg",
|
| 50 |
-
)
|
| 51 |
-
file_extractor = {ext: parser for ext in SUPPORTED_EXTS}
|
| 52 |
-
|
| 53 |
-
embed_model = MixedbreadAIEmbedding(
|
| 54 |
-
api_key = MXBAI_API_KEY,
|
| 55 |
-
model_name = EMBED_MODEL,
|
| 56 |
-
batch_size = 8, # keep requests < 100 KB
|
| 57 |
-
timeout = 60, # generous server-side processing window
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
llm = Groq(model=LLM_MODEL, api_key=GROQ_API_KEY)
|
| 61 |
-
|
| 62 |
-
# A simple global cache (could be swapped for Redis, etc.)
|
| 63 |
-
vector_index: VectorStoreIndex | None = None
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 67 |
-
# 3. Helper wrappers
|
| 68 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 69 |
-
@retry(
|
| 70 |
-
wait=wait_exponential(multiplier=2, min=4, max=32),
|
| 71 |
-
stop=stop_after_attempt(4),
|
| 72 |
-
retry_error_callback=lambda retry_state: None, # bubble up as None
|
| 73 |
-
reraise=False,
|
| 74 |
-
)
|
| 75 |
-
def _safe_build_index(docs) -> VectorStoreIndex | None:
|
| 76 |
-
"""Retry MXBAI 503 / 429 transparently."""
|
| 77 |
-
try:
|
| 78 |
-
return VectorStoreIndex.from_documents(docs, embed_model=embed_model)
|
| 79 |
-
except ApiError as e:
|
| 80 |
-
# Tenacity will catch and retry unless non-5xx / non-429
|
| 81 |
-
if e.status_code not in (429, 500, 502, 503, 504):
|
| 82 |
-
raise
|
| 83 |
-
raise # trigger retry
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def load_files(file: Path | None) -> str:
|
| 87 |
-
"""Parse uploaded file and build vector index (with retries)."""
|
| 88 |
-
global vector_index
|
| 89 |
-
if file is None:
|
| 90 |
-
return "β οΈ No file selected."
|
| 91 |
-
|
| 92 |
-
if file.suffix.lower() not in SUPPORTED_EXTS:
|
| 93 |
-
allow = ", ".join(SUPPORTED_EXTS)
|
| 94 |
-
return f"β οΈ Unsupported file type. Allowed: {allow}"
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
file_extractor=file_extractor,
|
| 99 |
-
).load_data()
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
"""Stream answer chunks to the Chatbot."""
|
| 111 |
-
if vector_index is None:
|
| 112 |
-
yield "β‘οΈ Please upload a document first."
|
| 113 |
-
return
|
| 114 |
|
| 115 |
-
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
| 116 |
-
response = query_engine.query(message)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
global vector_index
|
| 127 |
vector_index = None
|
| 128 |
-
return None,
|
| 129 |
|
| 130 |
|
| 131 |
-
#
|
| 132 |
-
# 4. Gradio UI (5.x syntax)
|
| 133 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 134 |
with gr.Blocks(
|
| 135 |
theme=gr.themes.Default(
|
| 136 |
primary_hue="green",
|
| 137 |
secondary_hue="blue",
|
| 138 |
font=[gr.themes.GoogleFont("Poppins")],
|
| 139 |
),
|
| 140 |
-
css="footer {visibility:hidden}",
|
| 141 |
) as demo:
|
| 142 |
-
|
| 143 |
-
gr.Markdown("<h1 style='text-align:center'>DataCamp Doc Q&A π€π</h1>")
|
| 144 |
-
|
| 145 |
with gr.Row():
|
| 146 |
with gr.Column(scale=1):
|
| 147 |
file_input = gr.File(
|
| 148 |
-
label="Upload
|
| 149 |
-
file_count="single",
|
| 150 |
-
type="filepath",
|
| 151 |
-
show_label=True,
|
| 152 |
)
|
| 153 |
-
status_md = gr.Markdown()
|
| 154 |
with gr.Row():
|
| 155 |
-
|
| 156 |
-
|
|
|
|
| 157 |
with gr.Column(scale=3):
|
| 158 |
-
chatbot = gr.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
)
|
| 164 |
-
send_btn = gr.Button("Send", variant="primary")
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
outputs=
|
| 171 |
-
)
|
| 172 |
-
send_btn.click(
|
| 173 |
-
fn=respond,
|
| 174 |
-
inputs=[txt_box, chatbot],
|
| 175 |
-
outputs=chatbot,
|
| 176 |
)
|
| 177 |
-
clear_btn.click(
|
| 178 |
-
fn=clear,
|
| 179 |
-
outputs=[file_input, status_md, chatbot],
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
# optional: disable public OpenAPI schema (old crash guard)
|
| 183 |
-
demo.queue(api_open=False)
|
| 184 |
|
| 185 |
-
#
|
| 186 |
-
# 5. Launch
|
| 187 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 188 |
if __name__ == "__main__":
|
| 189 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 5 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
| 6 |
from llama_index.llms.groq import Groq
|
| 7 |
from llama_parse import LlamaParse
|
| 8 |
|
| 9 |
+
# API keys
|
| 10 |
+
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
| 11 |
+
groq_key = os.environ.get("GROQ_API_KEY")
|
| 12 |
+
mxbai_key = os.environ.get("MXBAI_API_KEY")
|
| 13 |
+
if not (llama_cloud_key and groq_key and mxbai_key):
|
| 14 |
+
raise ValueError(
|
| 15 |
+
"API Keys not found! Ensure they are passed to the Docker container."
|
|
|
|
|
|
|
|
|
|
| 16 |
)
|
| 17 |
|
| 18 |
+
# models name
|
| 19 |
+
llm_model_name = "llama-3.1-70b-versatile"
|
| 20 |
+
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Initialize the parser
|
| 23 |
+
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Define file extractor with various common extensions
|
| 26 |
+
file_extractor = {
|
| 27 |
+
".pdf": parser,
|
| 28 |
+
".docx": parser,
|
| 29 |
+
".doc": parser,
|
| 30 |
+
".txt": parser,
|
| 31 |
+
".csv": parser,
|
| 32 |
+
".xlsx": parser,
|
| 33 |
+
".pptx": parser,
|
| 34 |
+
".html": parser,
|
| 35 |
+
".jpg": parser,
|
| 36 |
+
".jpeg": parser,
|
| 37 |
+
".png": parser,
|
| 38 |
+
".webp": parser,
|
| 39 |
+
".svg": parser,
|
| 40 |
+
}
|
| 41 |
|
| 42 |
+
# Initialize the embedding model
|
| 43 |
+
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
| 44 |
|
| 45 |
+
# Initialize the LLM
|
| 46 |
|
| 47 |
+
llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# File processing function
|
| 51 |
+
def load_files(file_path: str):
|
| 52 |
+
global vector_index
|
| 53 |
+
if not file_path:
|
| 54 |
+
return "No file path provided. Please upload a file."
|
| 55 |
+
|
| 56 |
+
valid_extensions = ', '.join(file_extractor.keys())
|
| 57 |
+
if not any(file_path.endswith(ext) for ext in file_extractor):
|
| 58 |
+
return f"The parser can only parse the following file types: {valid_extensions}"
|
| 59 |
+
|
| 60 |
+
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
| 61 |
+
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
| 62 |
+
print(f"Parsing completed for: {file_path}")
|
| 63 |
+
filename = os.path.basename(file_path)
|
| 64 |
+
return f"Ready to provide responses based on: {filename}"
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Respond function
|
| 68 |
+
def respond(message, history):
|
| 69 |
+
try:
|
| 70 |
+
# Use the preloaded LLM
|
| 71 |
+
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
| 72 |
+
streaming_response = query_engine.query(message)
|
| 73 |
+
partial_text = ""
|
| 74 |
+
for new_text in streaming_response.response_gen:
|
| 75 |
+
partial_text += new_text
|
| 76 |
+
# Yield an empty string to cleanup the message textbox and the updated conversation history
|
| 77 |
+
yield partial_text
|
| 78 |
+
except (AttributeError, NameError):
|
| 79 |
+
print("An error occurred while processing your request.")
|
| 80 |
+
yield "Please upload the file to begin chat."
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Clear function
|
| 84 |
+
def clear_state():
|
| 85 |
global vector_index
|
| 86 |
vector_index = None
|
| 87 |
+
return [None, None, None]
|
| 88 |
|
| 89 |
|
| 90 |
+
# UI Setup
|
|
|
|
|
|
|
| 91 |
with gr.Blocks(
|
| 92 |
theme=gr.themes.Default(
|
| 93 |
primary_hue="green",
|
| 94 |
secondary_hue="blue",
|
| 95 |
font=[gr.themes.GoogleFont("Poppins")],
|
| 96 |
),
|
| 97 |
+
css="footer {visibility: hidden}",
|
| 98 |
) as demo:
|
| 99 |
+
gr.Markdown("# DataCamp Doc Q&A π€π")
|
|
|
|
|
|
|
| 100 |
with gr.Row():
|
| 101 |
with gr.Column(scale=1):
|
| 102 |
file_input = gr.File(
|
| 103 |
+
file_count="single", type="filepath", label="Upload Document"
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
|
|
|
| 105 |
with gr.Row():
|
| 106 |
+
btn = gr.Button("Submit", variant="primary")
|
| 107 |
+
clear = gr.Button("Clear")
|
| 108 |
+
output = gr.Textbox(label="Status")
|
| 109 |
with gr.Column(scale=3):
|
| 110 |
+
chatbot = gr.ChatInterface(
|
| 111 |
+
fn=respond,
|
| 112 |
+
chatbot=gr.Chatbot(height=300),
|
| 113 |
+
theme="soft",
|
| 114 |
+
show_progress="full",
|
| 115 |
+
textbox=gr.Textbox(
|
| 116 |
+
placeholder="Ask questions about the uploaded document!",
|
| 117 |
+
container=False,
|
| 118 |
+
),
|
| 119 |
)
|
|
|
|
| 120 |
|
| 121 |
+
# Set up Gradio interactions
|
| 122 |
+
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
| 123 |
+
clear.click(
|
| 124 |
+
fn=clear_state, # Use the clear_state function
|
| 125 |
+
outputs=[file_input, output],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Launch the demo
|
|
|
|
|
|
|
| 129 |
if __name__ == "__main__":
|
| 130 |
+
demo.launch()
|