Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 4 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
|
|
|
| 5 |
from llama_index.llms.groq import Groq
|
| 6 |
from llama_parse import LlamaParse
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# API keys
|
| 9 |
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
@@ -14,7 +18,18 @@ if not (llama_cloud_key and groq_key and mxbai_key):
|
|
| 14 |
|
| 15 |
# Model names
|
| 16 |
llm_model_name = "llama-3.1-70b-versatile"
|
| 17 |
-
embed_model_name = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Initialize the parser
|
| 20 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
@@ -37,8 +52,20 @@ file_extractor = {
|
|
| 37 |
}
|
| 38 |
|
| 39 |
# Initialize models with error handling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
-
embed_model =
|
| 42 |
llm = Groq(model=llm_model_name, api_key=groq_key)
|
| 43 |
except Exception as e:
|
| 44 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
|
@@ -61,14 +88,20 @@ def load_files(file_path: str):
|
|
| 61 |
input_files=[file_path],
|
| 62 |
file_extractor=file_extractor
|
| 63 |
).load_data()
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
except Exception as e:
|
| 71 |
-
return f"Error
|
| 72 |
|
| 73 |
# Respond function
|
| 74 |
def respond(message, history):
|
|
@@ -115,7 +148,7 @@ with gr.Blocks(
|
|
| 115 |
with gr.Column(scale=3):
|
| 116 |
chatbot = gr.ChatInterface(
|
| 117 |
fn=respond,
|
| 118 |
-
chatbot=gr.Chatbot(height=300, type="messages"),
|
| 119 |
theme="soft",
|
| 120 |
show_progress="full",
|
| 121 |
textbox=gr.Textbox(
|
|
|
|
| 1 |
import os
|
| 2 |
+
import time
|
| 3 |
import gradio as gr
|
| 4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 5 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
| 6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
from llama_index.llms.groq import Groq
|
| 8 |
from llama_parse import LlamaParse
|
| 9 |
+
import mixedbread_ai
|
| 10 |
+
from mixedbread_ai.core.api_error import ApiError
|
| 11 |
|
| 12 |
# API keys
|
| 13 |
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
|
|
| 18 |
|
| 19 |
# Model names
|
| 20 |
llm_model_name = "llama-3.1-70b-versatile"
|
| 21 |
+
embed_model_name = "mxbai-embed-large-v1" # Mixedbread AI model
|
| 22 |
+
fallback_embed_model = "sentence-transformers/all-MiniLM-L6-v2" # Fallback model
|
| 23 |
+
|
| 24 |
+
# Configure Mixedbread AI SDK
|
| 25 |
+
mixedbread_config = mixedbread_ai.Configuration(
|
| 26 |
+
api_key=mxbai_key,
|
| 27 |
+
retry_on=[503], # Retry on 503 Service Unavailable
|
| 28 |
+
max_retries=3,
|
| 29 |
+
retry_delay=2.0, # Seconds between retries
|
| 30 |
+
timeout=30.0, # Request timeout
|
| 31 |
+
)
|
| 32 |
+
mixedbread_client = mixedbread_ai.Client(configuration=mixedbread_config)
|
| 33 |
|
| 34 |
# Initialize the parser
|
| 35 |
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
|
|
| 52 |
}
|
| 53 |
|
| 54 |
# Initialize models with error handling
|
| 55 |
+
def initialize_embed_model():
|
| 56 |
+
try:
|
| 57 |
+
return MixedbreadAIEmbedding(
|
| 58 |
+
api_key=mxbai_key,
|
| 59 |
+
model_name=embed_model_name,
|
| 60 |
+
mxbai_client=mixedbread_client, # Use configured SDK client
|
| 61 |
+
)
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Failed to initialize Mixedbread AI embedding: {str(e)}")
|
| 64 |
+
print("Falling back to local HuggingFace embedding model.")
|
| 65 |
+
return HuggingFaceEmbedding(model_name=fallback_embed_model)
|
| 66 |
+
|
| 67 |
try:
|
| 68 |
+
embed_model = initialize_embed_model()
|
| 69 |
llm = Groq(model=llm_model_name, api_key=groq_key)
|
| 70 |
except Exception as e:
|
| 71 |
raise RuntimeError(f"Failed to initialize models: {str(e)}")
|
|
|
|
| 88 |
input_files=[file_path],
|
| 89 |
file_extractor=file_extractor
|
| 90 |
).load_data()
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
vector_index = VectorStoreIndex.from_documents(
|
| 94 |
+
document,
|
| 95 |
+
embed_model=embed_model
|
| 96 |
+
)
|
| 97 |
+
filename = os.path.basename(file_path)
|
| 98 |
+
return f"Ready to provide responses based on: {filename}"
|
| 99 |
+
except ApiError as e:
|
| 100 |
+
return f"Error processing file with Mixedbread AI API: {str(e)}. Status code: {e.status_code}"
|
| 101 |
+
except Exception as e:
|
| 102 |
+
return f"Unexpected error processing file: {str(e)}"
|
| 103 |
except Exception as e:
|
| 104 |
+
return f"Error loading file: {str(e)}"
|
| 105 |
|
| 106 |
# Respond function
|
| 107 |
def respond(message, history):
|
|
|
|
| 148 |
with gr.Column(scale=3):
|
| 149 |
chatbot = gr.ChatInterface(
|
| 150 |
fn=respond,
|
| 151 |
+
chatbot=gr.Chatbot(height=300, type="messages"),
|
| 152 |
theme="soft",
|
| 153 |
show_progress="full",
|
| 154 |
textbox=gr.Textbox(
|