Spaces:
Runtime error
Runtime error
| # Download the pretrained checkpoints | |
| To facilitate the model training, we also provide some checkpoints that are | |
| pretrained on ImageNet. | |
| After downloading the desired pretrained checkpoint, remember to update | |
| the `initial_checkpoint` path in the config files. | |
| ## Checkpoints | |
| **Simple Training Strategy**: This training strategy yields a similar | |
| performance to the original ResNet paper [2]. | |
| Backbone | Pretrained Dataset | |
| -------- | :---------------: | |
| ResNet-50 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_imagenet1k.tar.gz)) | ImageNet-1K | |
| **Strong Training Strategy**: This training strategy additionally | |
| employs AutoAugment [3], label-smoothing [4], and drop-path [5], yielding | |
| a stronger performance on ImageNet than the original ResNet paper [2]. | |
| Backbone | Pretrained Dataset | |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------: | |
| ResNet-50 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| ResNet-50-Beta ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_beta_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| Wide-ResNet-41 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/wide_resnet41_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| SWideRNet-SAC-(1, 1, 1) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_1_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| SWideRNet-SAC-(1, 1, 3) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_3_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| SWideRNet-SAC-(1, 1, 4.5) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_4.5_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| Axial-SWideRNet-(1, 1, 1) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_1_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| Axial-SWideRNet-(1, 1, 3) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_3_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| Axial-SWideRNet-(1, 1, 4.5) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_4.5_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| MaX-DeepLab-S-Backbone ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/max_deeplab_s_backbone_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| MaX-DeepLab-L-Backbone ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/max_deeplab_l_backbone_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
| ### References | |
| 1. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, | |
| Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, | |
| Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. "ImageNet Large | |
| Scale Visual Recognition Challenge". IJCV, 2015. | |
| 2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual | |
| learning for image recognition. In CVPR, 2016. | |
| 3. Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and | |
| Quoc V Le. "Autoaugment: Learning augmentation policies from data". | |
| In CVPR, 2019. | |
| 4. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and | |
| Zbigniew Wojna. "Rethinking the inception architecture for computer | |
| vision." In CVPR, 2016. | |
| 5. Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. | |
| "Deep networks with stochastic depth." In ECCV, 2016. | |