File size: 5,359 Bytes
79f8da9
 
d149d93
c157987
79f8da9
 
c157987
 
79f8da9
d149d93
271fe07
79f8da9
 
 
c157987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f8da9
 
 
 
 
d149d93
79f8da9
 
 
d149d93
79f8da9
 
d149d93
79f8da9
 
c157987
79f8da9
 
 
 
 
 
 
c157987
d149d93
 
 
 
79f8da9
d149d93
79f8da9
 
 
 
 
 
d149d93
 
 
 
 
 
 
 
 
 
c157987
d149d93
c157987
d149d93
c157987
d149d93
c157987
d149d93
 
 
c157987
 
d149d93
 
 
 
 
 
c157987
d04c52c
d149d93
 
 
 
 
 
558d7d3
 
 
 
 
 
 
 
 
 
d149d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c157987
d149d93
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import torch
import numpy as np
import json
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel
from huggingface_hub import hf_hub_download
import os

# --- 1. CONFIGURATION ---
ADAPTER_REPO = "jvillar-sheff/ag-news-distilbert-lora"
BASE_MODEL_ID = "distilbert-base-uncased"
CLASS_NAMES = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}

# --- 2. DYNAMIC METRICS LOADING ---
def fetch_metrics():
    """Downloads evaluation_report.json from the Model Hub."""
    try:
        file_path = hf_hub_download(repo_id=ADAPTER_REPO, filename="evaluation_report.json")
        with open(file_path, "r") as f:
            data = json.load(f)
        
        # Extract numbers
        acc = data['overall_metrics']['Accuracy']
        f1 = data['overall_metrics']['F1 Macro']
        
        return {
            "Accuracy": f"{acc:.2%}",
            "F1_Score": f"{f1:.4f}"
        }
    except Exception as e:
        print(f"Error loading metrics: {e}")
        return {"Accuracy": "N/A", "F1_Score": "N/A"}

# Load metrics on app startup
MODEL_METRICS = fetch_metrics()

# --- 3. MODEL LOADING ---
def load_model():
    print("Loading Base Model...")
    base_model = AutoModelForSequenceClassification.from_pretrained(
        BASE_MODEL_ID,
        num_labels=len(CLASS_NAMES),
        id2label={k: v for k, v in enumerate(CLASS_NAMES.values())},
        label2id={v: k for k, v in CLASS_NAMES.items()}
    )
    
    print("Loading Tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO)
    
    print("Loading Adapters...")
    model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
    
    # Force CPU for Free Tier Spaces
    device = torch.device("cpu")
    model.to(device)
    model.eval()
    return model, tokenizer, device

model, tokenizer, device = load_model()

# --- 4. PREDICTION LOGIC ---
def predict(text):
    if not text.strip():
        return None, None, None

    inputs = tokenizer(
        text, return_tensors="pt", truncation=True, padding="max_length", max_length=128
    ).to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    logits = outputs.logits
    probs = torch.nn.functional.softmax(logits, dim=1).squeeze().cpu().numpy()
    
    # 1. Get Top Label
    pred_idx = np.argmax(probs)
    pred_label = CLASS_NAMES[pred_idx]
    conf = float(probs[pred_idx])

    # 2. Create Probability Dict for the Chart
    class_probs = {CLASS_NAMES[i]: float(probs[i]) for i in range(len(CLASS_NAMES))}

    # 3. Create HTML for the "Confidence Badge"
    if conf > 0.85:
        bg_color, txt_color, icon = "#d4edda", "#155724", "↑" # Green
    elif conf > 0.60:
        bg_color, txt_color, icon = "#fff3cd", "#856404", "~" # Yellow
    else:
        bg_color, txt_color, icon = "#f8d7da", "#721c24", "↓" # Red
        
    badge_html = f"""
    <div style='background-color: {bg_color}; color: {txt_color}; 
    padding: 8px 16px; border-radius: 5px; display: inline-block; font-weight: bold; font-size: 16px;'>
    {icon} Confidence: {conf:.2%}
    </div>
    """
    
    # Return: Label Text, Badge HTML, Chart Data
    return f"# {pred_label}", badge_html, class_probs

# --- 5. UI LAYOUT (gr.Blocks) ---
with gr.Blocks() as demo:
    
    gr.Markdown("# πŸ“° NLP News Classifier")
    gr.Markdown("Classify news articles into World, Sports, Business, or Sci/Tech using DistilBERT + LoRA.")

    # -- The "Green Banner" (HTML) --
    gr.HTML(f"""
    <div style="
        background-color: #d1e7dd; 
        padding: 15px; 
        border-radius: 5px; 
        border: 1px solid #badbcc; 
        margin-bottom: 20px;
        color: #0f5132;
    ">
        <span style="color: #0f5132; font-weight: bold;">βœ… Model Performance (Test Set):</span>
        <span style="color: #0f5132;">Accuracy: {MODEL_METRICS['Accuracy']} | F1 Score: {MODEL_METRICS['F1_Score']}</span>
    </div>
    """)

    with gr.Row():
        # Left Column: Input
        with gr.Column(scale=1):
            input_text = gr.Textbox(
                lines=6, 
                placeholder="Paste a news snippet here...", 
                label="News Article"
            )
            btn = gr.Button("Classify Article", variant="primary")
            
            gr.Markdown("### Examples")
            gr.Examples(
                examples=[
                    ["The stock market rallied today as tech companies reported record profits."],
                    ["The local team won the championship after a stunning overtime goal."],
                    ["NASA announces plans to launch a new rover to Mars next July."]
                ],
                inputs=input_text
            )

        # Right Column: Results
        with gr.Column(scale=1):
            gr.Markdown("### Prediction")
            # Output 1: Big Label text
            out_label = gr.Markdown()
            # Output 2: The Colored Badge
            out_badge = gr.HTML()
            
            gr.Markdown("### Probability Breakdown")
            # Output 3: Bar Chart
            out_chart = gr.Label(num_top_classes=4, label="Confidence Scores")

    # Wire up the button
    btn.click(
        fn=predict,
        inputs=input_text,
        outputs=[out_label, out_badge, out_chart]
    )

# Launch
if __name__ == "__main__":
    demo.launch()