Spaces:
Running
Running
Joaquin Villar
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
from peft import PeftModel
|
| 5 |
+
|
| 6 |
+
# --- CONFIGURATION ---
|
| 7 |
+
# Replace with your specific repo name
|
| 8 |
+
ADAPTER_REPO = "jvillar-sheff/news-classifier-demo"
|
| 9 |
+
BASE_MODEL_ID = "distilbert-base-uncased"
|
| 10 |
+
|
| 11 |
+
CLASS_NAMES = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
|
| 12 |
+
|
| 13 |
+
def load_model():
|
| 14 |
+
print("Loading Base Model...")
|
| 15 |
+
# 1. Load the Base Model (Generic DistilBERT)
|
| 16 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 17 |
+
BASE_MODEL_ID,
|
| 18 |
+
num_labels=len(CLASS_NAMES),
|
| 19 |
+
id2label={k: v for k, v in CLASS_NAMES.items()},
|
| 20 |
+
label2id={v: k for k, v in CLASS_NAMES.items()}
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# 2. Load the Tokenizer from YOUR repo (ensures consistency)
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO)
|
| 25 |
+
|
| 26 |
+
# 3. Load and Apply your LoRA Adapters
|
| 27 |
+
print(f"Loading LoRA Adapters from {ADAPTER_REPO}...")
|
| 28 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
| 29 |
+
|
| 30 |
+
# Optimize for CPU (Free Tier Spaces are CPU)
|
| 31 |
+
device = torch.device("cpu")
|
| 32 |
+
model.to(device)
|
| 33 |
+
model.eval()
|
| 34 |
+
|
| 35 |
+
return model, tokenizer, device
|
| 36 |
+
|
| 37 |
+
# Load model once on startup
|
| 38 |
+
model, tokenizer, device = load_model()
|
| 39 |
+
|
| 40 |
+
def classify_news(text):
|
| 41 |
+
if not text:
|
| 42 |
+
return None
|
| 43 |
+
|
| 44 |
+
# Preprocess
|
| 45 |
+
inputs = tokenizer(
|
| 46 |
+
text,
|
| 47 |
+
return_tensors="pt",
|
| 48 |
+
truncation=True,
|
| 49 |
+
padding="max_length",
|
| 50 |
+
max_length=128
|
| 51 |
+
).to(device)
|
| 52 |
+
|
| 53 |
+
# Predict
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
outputs = model(**inputs)
|
| 56 |
+
|
| 57 |
+
# Get Probabilities
|
| 58 |
+
logits = outputs.logits
|
| 59 |
+
probabilities = torch.softmax(logits, dim=1).squeeze().cpu().numpy()
|
| 60 |
+
|
| 61 |
+
# Format Output
|
| 62 |
+
results = {}
|
| 63 |
+
for i, prob in enumerate(probabilities):
|
| 64 |
+
results[CLASS_NAMES[i]] = float(prob)
|
| 65 |
+
|
| 66 |
+
return results
|
| 67 |
+
|
| 68 |
+
# Create Interface
|
| 69 |
+
iface = gr.Interface(
|
| 70 |
+
fn=classify_news,
|
| 71 |
+
inputs=gr.Textbox(
|
| 72 |
+
lines=5,
|
| 73 |
+
placeholder="Paste a news article here...",
|
| 74 |
+
label="News Text"
|
| 75 |
+
),
|
| 76 |
+
outputs=gr.Label(num_top_classes=4, label="Prediction"),
|
| 77 |
+
title="AI News Classifier (DistilBERT + LoRA)",
|
| 78 |
+
description="This model classifies news into World, Sports, Business, or Sci/Tech categories. Trained on AG News using Parameter-Efficient Fine-Tuning.",
|
| 79 |
+
examples=[
|
| 80 |
+
["The stock market rallied today as tech companies reported record profits."],
|
| 81 |
+
["The team scored a goal in the final minute to win the championship."],
|
| 82 |
+
["New research shows that drinking coffee may increase life expectancy."],
|
| 83 |
+
["Diplomats gathered in Geneva to discuss the peace treaty."]
|
| 84 |
+
],
|
| 85 |
+
theme="soft"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
iface.launch()
|