Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2025 AIDAS Lab | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import sys | |
| os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| import wandb | |
| from models import MMadaModelLM | |
| from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig | |
| from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer | |
| from training.prompting_utils import UniversalPrompting | |
| from training.utils import get_config, flatten_omega_conf | |
| from transformers import AutoTokenizer | |
| import argparse | |
| def resize_vocab(model, config): | |
| print(f"Resizing token embeddings to {config.model.mmada.new_vocab_size}") | |
| model.resize_token_embeddings(config.model.mmada.new_vocab_size) | |
| def get_vq_model_class(model_type): | |
| if model_type == "magvitv2": | |
| return MAGVITv2 | |
| elif model_type == "emova": | |
| return EMOVASpeechTokenizer.from_pretrained( | |
| "Emova-ollm/emova_speech_tokenizer_hf" | |
| ) | |
| else: | |
| raise ValueError(f"model_type {model_type} not supported.") | |
| if __name__ == '__main__': | |
| config = get_config() | |
| resume_wandb_run = config.wandb.resume | |
| run_id = config.wandb.get("run_id", None) | |
| if run_id is None: | |
| resume_wandb_run = False | |
| run_id = wandb.util.generate_id() | |
| config.wandb.run_id = run_id | |
| wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} | |
| wandb.init( | |
| project="demo", | |
| name=config.experiment.name + '_t2s', | |
| config=wandb_config, | |
| ) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| text_tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") | |
| uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, | |
| special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>", "<|t2s|>"), | |
| ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) | |
| # b) Load speech tokenizer/detokenizer | |
| vq_model = get_vq_model_class(config.model.speech_model.type) | |
| vq_model = vq_model.from_pretrained(config.model.speech_model.speech_model_name).to(device) | |
| vq_model.requires_grad_(False) | |
| vq_model.eval() | |
| # c) Load main MMaDA model | |
| train_step = config.model.mmada.train_step | |
| trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model" | |
| # trained_checkpoint_path = "/home/work/AIDAS/omada-training-stage1/checkpoint-10000/unwrapped_model" | |
| print(f"Loading trained model from: {trained_checkpoint_path}") | |
| model = MMadaModelLM.from_pretrained( | |
| trained_checkpoint_path, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16, | |
| config='/home/work/AIDAS/ommda-training-s2t-mmada/config.json' # Should be changed to t2s after the train ends | |
| ) | |
| print("β Trained model loaded successfully!") | |
| # model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) | |
| # # d) Extend vocabulary for speech tokens | |
| num_speech_tokens = 4096 | |
| image_vocab_size = config.model.mmada.codebook_size # 8192 | |
| # text_vocab_size = len(uni_prompting.text_tokenizer) | |
| # resize_vocab(model, config) | |
| model.to(device).eval() | |
| mask_token_id = model.config.mask_token_id | |
| if config.get("validation_prompts_file", None) is not None: | |
| config.dataset.params.validation_prompts_file = config.validation_prompts_file | |
| config.training.batch_size = config.batch_size | |
| config.training.guidance_scale = config.guidance_scale | |
| config.training.generation_timesteps = config.generation_timesteps | |
| with open(config.dataset.params.validation_prompts_file, "r") as f: | |
| validation_prompts = f.read().splitlines() | |
| for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)): | |
| prompts = validation_prompts[step:step + config.training.batch_size] | |
| audio_tokens = torch.ones((len(prompts), config.model.mmada.num_speech_vq_tokens), | |
| dtype=torch.long, device=device) * mask_token_id | |
| input_ids, attention_mask = uni_prompting((prompts, audio_tokens), 't2s_gen') | |
| if config.training.guidance_scale > 0: | |
| uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), audio_tokens), 't2s_gen') | |
| else: | |
| uncond_input_ids = None | |
| uncond_attention_mask = None | |
| if config.get("mask_schedule", None) is not None: | |
| schedule = config.mask_schedule.schedule | |
| args = config.mask_schedule.get("params", {}) | |
| mask_schedule = get_mask_schedule(schedule, **args) | |
| else: | |
| mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine")) | |
| with torch.no_grad(): | |
| # TODO: Implement t2s_generate | |
| gen_token_ids = model.t2s_generate( | |
| input_ids=input_ids, | |
| uncond_input_ids=uncond_input_ids, | |
| attention_mask=attention_mask, | |
| uncond_attention_mask=uncond_attention_mask, | |
| guidance_scale=config.training.guidance_scale, | |
| temperature=config.training.get("generation_temperature", 1.0), | |
| timesteps=config.training.generation_timesteps, | |
| noise_schedule=mask_schedule, | |
| noise_type=config.training.get("noise_type", "mask"), | |
| seq_len=config.model.mmada.num_speech_vq_tokens, | |
| uni_prompting=uni_prompting, | |
| config=config, | |
| ) | |
| gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.speech_codebook_size - 1, min=0) | |
| id_list = gen_token_ids[0].cpu().tolist() | |
| print(len(id_list)) | |
| speech_unit_str = " ".join(map(str, id_list)) | |
| speech_unit_for_decode = "".join([f"<|speech_{unit}|>" for unit in speech_unit_str.split(" ")]) | |
| output_wav_path = f"/home/work/AIDAS/output/omada_tmp/generated_audio_step_{train_step}_{step}_item.wav" | |
| # Using a default condition, this can be made more dynamic if needed | |
| condition = 'gender-female_emotion-neutral_speed-normal_pitch-normal' | |
| vq_model.decode( | |
| speech_unit_for_decode, | |
| condition=condition, | |
| output_wav_file=output_wav_path | |
| ) | |
| wandb.log({ | |
| f"Generated Audio/{step*config.training.batch_size}": wandb.Audio(output_wav_path, caption=prompts) | |
| }, step=step) |