File size: 7,462 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import MMadaModelLM
from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig
from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer
import argparse

def resize_vocab(model, config):
    print(f"Resizing token embeddings to {config.model.mmada.new_vocab_size}")
    model.resize_token_embeddings(config.model.mmada.new_vocab_size)


def get_vq_model_class(model_type):
    if model_type == "magvitv2":
        return MAGVITv2
    elif model_type == "emova":
        return EMOVASpeechTokenizer.from_pretrained(
                                                    "Emova-ollm/emova_speech_tokenizer_hf"
                                                    )
    else:
        raise ValueError(f"model_type {model_type} not supported.")

if __name__ == '__main__':
    config = get_config()
    resume_wandb_run = config.wandb.resume
    run_id = config.wandb.get("run_id", None)
    if run_id is None:
        resume_wandb_run = False
        run_id = wandb.util.generate_id()
        config.wandb.run_id = run_id

    wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}

    wandb.init(
        project="demo",
        name=config.experiment.name + '_t2s',
        config=wandb_config,
    )

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    text_tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")
    
    uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                       special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>", "<|t2s|>"),
                                       ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
    
    # b) Load speech tokenizer/detokenizer
    vq_model = get_vq_model_class(config.model.speech_model.type)
    vq_model = vq_model.from_pretrained(config.model.speech_model.speech_model_name).to(device)
    vq_model.requires_grad_(False)
    vq_model.eval()
    
    # c) Load main MMaDA model
    train_step = config.model.mmada.train_step
    trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model"
    # trained_checkpoint_path = "/home/work/AIDAS/omada-training-stage1/checkpoint-10000/unwrapped_model"

    print(f"Loading trained model from: {trained_checkpoint_path}")
    model = MMadaModelLM.from_pretrained(
        trained_checkpoint_path, 
        trust_remote_code=True, 
        torch_dtype=torch.bfloat16,
        config='/home/work/AIDAS/ommda-training-s2t-mmada/config.json'         # Should be changed to t2s after the train ends
    )
    print("✅ Trained model loaded successfully!")

    # model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
    
    # # d) Extend vocabulary for speech tokens
    num_speech_tokens = 4096
    image_vocab_size = config.model.mmada.codebook_size # 8192
    # text_vocab_size = len(uni_prompting.text_tokenizer)

    # resize_vocab(model, config)
    model.to(device).eval()

    mask_token_id = model.config.mask_token_id
    if config.get("validation_prompts_file", None) is not None:
        config.dataset.params.validation_prompts_file = config.validation_prompts_file
    config.training.batch_size = config.batch_size
    config.training.guidance_scale = config.guidance_scale
    config.training.generation_timesteps = config.generation_timesteps

    with open(config.dataset.params.validation_prompts_file, "r") as f:
        validation_prompts = f.read().splitlines()

    for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)):
        prompts = validation_prompts[step:step + config.training.batch_size]

        audio_tokens = torch.ones((len(prompts), config.model.mmada.num_speech_vq_tokens),
                                    dtype=torch.long, device=device) * mask_token_id
        input_ids, attention_mask = uni_prompting((prompts, audio_tokens), 't2s_gen')
        if config.training.guidance_scale > 0:
            uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), audio_tokens), 't2s_gen')
        else:
            uncond_input_ids = None
            uncond_attention_mask = None

        if config.get("mask_schedule", None) is not None:
            schedule = config.mask_schedule.schedule
            args = config.mask_schedule.get("params", {})
            mask_schedule = get_mask_schedule(schedule, **args)
        else:
            mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine"))
        with torch.no_grad():
            # TODO: Implement t2s_generate
            gen_token_ids = model.t2s_generate(
                input_ids=input_ids,
                uncond_input_ids=uncond_input_ids,
                attention_mask=attention_mask,
                uncond_attention_mask=uncond_attention_mask,
                guidance_scale=config.training.guidance_scale,
                temperature=config.training.get("generation_temperature", 1.0),
                timesteps=config.training.generation_timesteps,
                noise_schedule=mask_schedule,
                noise_type=config.training.get("noise_type", "mask"),
                seq_len=config.model.mmada.num_speech_vq_tokens,
                uni_prompting=uni_prompting,
                config=config,
            )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.speech_codebook_size - 1, min=0)
        id_list = gen_token_ids[0].cpu().tolist()
        print(len(id_list))
        speech_unit_str = " ".join(map(str, id_list))
        speech_unit_for_decode = "".join([f"<|speech_{unit}|>" for unit in speech_unit_str.split(" ")])
        
        
        output_wav_path = f"/home/work/AIDAS/output/omada_tmp/generated_audio_step_{train_step}_{step}_item.wav"
        # Using a default condition, this can be made more dynamic if needed
        condition = 'gender-female_emotion-neutral_speed-normal_pitch-normal'

        vq_model.decode(
                    speech_unit_for_decode,
                    condition=condition,
                    output_wav_file=output_wav_path
                )

        wandb.log({
            f"Generated Audio/{step*config.training.batch_size}": wandb.Audio(output_wav_path, caption=prompts)
        }, step=step)