AIDAS-Omni-Modal-Diffusion / MMaDA /inference_s2t_emova.py
jaeikkim
Reinit Space without binary assets
7bfbdc3
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import editdistance
from functools import partial
import re
from normalizer import data_utils
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from tqdm import tqdm
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import wandb
from datasets import load_dataset
from models import OMadaModelLM
from training.data import S2T_INSTRUCTION
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer
import argparse
import logging
def setup_logger(rank):
logger = logging.getLogger(__name__)
if logger.hasHandlers():
logger.handlers.clear()
formatter = logging.Formatter(f'%(asctime)s - [RANK {rank}] - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
if rank == 0:
logger.setLevel(logging.INFO)
else:
logger.setLevel(logging.WARNING)
return logger
def calculate_WER(recognized_text_list, groundtruth_text_list):
"""Calculates the Word Error Rate (WER) between predicted and ground truth texts."""
word_num = 0.0
scores = 0.0
for recognized_text, groundtruth_text in zip(recognized_text_list, groundtruth_text_list):
recognized_text = recognized_text.lower()
groundtruth_text = groundtruth_text.lower()
recognized_text = re.sub(r"[^\w\s']", "", recognized_text)
groundtruth_text = re.sub(r"[^\w\s']", "", groundtruth_text)
recognized_word_list = recognized_text.split()
groundtruth_word_list = groundtruth_text.split()
current_word_num = len(groundtruth_word_list)
word_num += current_word_num
current_score = editdistance.eval(recognized_word_list, groundtruth_word_list)
scores += current_score
WER = scores / word_num if word_num > 0 else 0.0
return WER, scores, word_num
# ### REMOVED ###: No longer need this function
# def get_vq_model_class(model_type): ...
def get_emova_dataset(logger):
"""Loads the EMOVA ASR/TTS evaluation dataset from Hugging Face."""
logger.info("Loading EMOVA dataset (librispeech-asr-tts config)...")
dataset = load_dataset("Emova-ollm/emova-asr-tts-eval", "librispeech-asr-tts", split='test')
dataset = dataset.filter(lambda example: 'asr' in example['id'])
logger.info(f"Dataset loaded successfully. Found {len(dataset)} ASR examples.")
return dataset
def setup_distributed(rank, world_size):
"""Initializes the distributed process group."""
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup_distributed():
"""Cleans up the distributed process group."""
dist.destroy_process_group()
# ### MODIFIED ###: Dataset class now parses speech tokens from string
class EMOVAAsrEvalDataset(Dataset):
def __init__(self, hf_dataset, text_vocab_size, image_vocab_size):
self.hf_dataset = hf_dataset
self.text_vocab_size = text_vocab_size
self.image_vocab_size = image_vocab_size
# Pre-compile the regex for efficiency
self.speech_token_pattern = re.compile(r'<\|speech_(\d+)\|>')
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
example = self.hf_dataset[idx]
# Ground truth text is from the 'gpt' turn
gt_text = example['conversations'][-1]['value']
sample_id = example['id']
# Audio tokens are in the 'human' turn as a string
audio_token_string = example['conversations'][0]['value']
# Parse the string to extract integer token IDs
speech_token_ids_str = self.speech_token_pattern.findall(audio_token_string)
# print(audio_token_string)
# print(speech_token_ids_str)
if not speech_token_ids_str:
return None # Handle cases with no speech tokens
speech_token_ids = torch.tensor([int(s) for s in speech_token_ids_str], dtype=torch.long)
# Shift audio token IDs to the correct range for the multimodal model's vocabulary
speech_token_ids += self.text_vocab_size + self.image_vocab_size
return {
# Unsqueeze to add a batch dimension (consistent with original vq_model.encode output)
"speech_token_ids": speech_token_ids.unsqueeze(0),
"gt_text": gt_text,
"sample_id": sample_id
}
def evaluation_collate_fn(batch, text_tokenizer, uni_prompting, config):
batch = [b for b in batch if b is not None]
if not batch:
return None
max_text_len = config.dataset.preprocessing.max_seq_length
max_audio_len = config.dataset.preprocessing.max_aud_length + 1
audio_pad_id = 126093
sptids_dict = uni_prompting.sptids_dict
batched_input_ids = []
gt_texts = [item["gt_text"] for item in batch]
sample_ids = [item["sample_id"] for item in batch]
for item in batch:
current_audio_tokens = item["speech_token_ids"]
task_tensor = sptids_dict['<|s2t|>'].to('cpu').unsqueeze(0)
soa_tensor = sptids_dict['<|soa|>'].to('cpu').unsqueeze(0)
eoa_tensor = sptids_dict['<|eoa|>'].to('cpu').unsqueeze(0)
effective_max_audio = max_audio_len - 3
if current_audio_tokens.shape[1] > effective_max_audio:
current_audio_tokens = current_audio_tokens[:, :effective_max_audio]
audio_block = torch.cat([task_tensor, soa_tensor, current_audio_tokens, eoa_tensor], dim=1)
num_padding = max_audio_len - audio_block.shape[1]
if num_padding > 0:
padding_tensor = torch.full((1, num_padding), audio_pad_id, dtype=torch.long)
padded_audio_block = torch.cat([padding_tensor, audio_block], dim=1)
else:
padded_audio_block = audio_block
chosen_prompt = random.choice(S2T_INSTRUCTION)
prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{chosen_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
prompt_encoding = text_tokenizer(
prompt_text,
max_length=max_text_len,
truncation=True,
return_tensors="pt"
)
prompt_tensor = prompt_encoding.input_ids
final_sequence = torch.cat([padded_audio_block, prompt_tensor], dim=1)
batched_input_ids.append(final_sequence.squeeze(0))
pad_token_id = 126093
max_len = max(seq.size(0) for seq in batched_input_ids)
final_batch = torch.full((len(batched_input_ids), max_len),
pad_token_id,
dtype=torch.long)
for i, seq in enumerate(batched_input_ids):
final_batch[i, -len(seq):] = seq
return {
"input_ids": final_batch,
"gt_texts": gt_texts,
"sample_ids": sample_ids
}
def main():
"""Main function to run the distributed evaluation."""
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
setup_distributed(rank, world_size)
device = torch.device(f"cuda:{rank}")
logger = setup_logger(rank)
parser = argparse.ArgumentParser(description="Run DDP evaluation for MMadaModelLM on EMOVA dataset.")
parser.add_argument('--train_step', type=int, required=True, help='WIP')
parser.add_argument('--remasking', type=str, default='random', help='Remasking Strategy.')
parser.add_argument('--generation_step', type=int, default=512, help='WIP')
parser.add_argument('--new_tok', type=int, default=128, help='WIP')
parser.add_argument('--block_length', type=int, default=64, help='WIP')
# parser.add_argument('--ckpt_path', type=str, required=True, help='WIP')
args, unknown = parser.parse_known_args()
config = get_config()
if rank == 0:
run_id = config.wandb.get("run_id", None) or wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="merging_grid",
name=f'{config.experiment.name}-STEP-{args.train_step}-Remasking-{args.remasking}-GS-{args.generation_step}-NT-{args.new_tok}',
config=wandb_config,
)
text_tokenizer = AutoTokenizer.from_pretrained(config.model.omada.pretrained_model_path, padding_side="left")
uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
# ### REMOVED ###: VQ Model is not needed anymore
# vq_model_class = get_vq_model_class(config.model.vq_model_audio.type)
# vq_model = vq_model_class.from_pretrained(config.model.vq_model_audio.vq_model_name).to(device)
# vq_model.requires_grad_(False)
# vq_model.eval()
train_step = args.train_step
# trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model/"
trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1_2nd/checkpoint-50000/unwrapped_model"
# trained_checkpoint_path = args.ckpt_path
if rank == 0:
logger.info(f"Loading trained model from: {trained_checkpoint_path}")
model = OMadaModelLM.from_pretrained(
trained_checkpoint_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
config="/home/work/AIDAS/ckpts/omada/omada-training-stage1/config.json"
).to(device)
print("BEFORE DDP")
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
print("AFTER DDP")
if rank == 0:
logger.info("✅ Trained model loaded and wrapped with DDP successfully!")
text_vocab_size = len(uni_prompting.text_tokenizer)
image_vocab_size = config.model.omada.codebook_size
# --- Setup DataLoader ---
hf_dataset = get_emova_dataset(logger)
# ### MODIFIED ###: Pass only necessary arguments to the dataset class
eval_dataset = EMOVAAsrEvalDataset(hf_dataset, text_vocab_size, image_vocab_size)
sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank, shuffle=False)
collate_for_eval = partial(
evaluation_collate_fn,
text_tokenizer=text_tokenizer,
uni_prompting=uni_prompting,
config=config
)
dataloader = DataLoader(
eval_dataset,
batch_size=16,
sampler=sampler,
num_workers=0,
collate_fn=collate_for_eval,
pin_memory=True
)
# --- Evaluation Loop ---
local_results = []
model.eval()
progress_bar = tqdm(dataloader, desc="Evaluating on EMOVA ASR", disable=(rank != 0))
for batch in progress_bar:
if batch is None:
continue
input_ids = batch["input_ids"].to(device)
gt_texts = batch["gt_texts"]
sample_ids = batch["sample_ids"]
# print(input_ids)
# print(gt_texts)
# print(sample_ids)
with torch.no_grad():
output_ids = model.module.mmu_generate(input_ids, max_new_tokens=args.new_tok, steps=args.generation_step, block_length=args.block_length, remasking=args.remasking)
decoded_texts = text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
for i in range(len(decoded_texts)):
local_results.append({
"sample_id": sample_ids[i],
"gt_text": gt_texts[i],
"decoded_text": decoded_texts[i]
})
if rank == 0 and i == 0 and len(local_results) % 10 == 1:
logger.info(f"\n--- Example ---")
logger.info(f" ID: {sample_ids[i]}")
logger.info(f" GT: {gt_texts[i]}")
logger.info(f" PD: {decoded_texts[i]}")
logger.info(f"-----------------\n")
# --- Gather Results from All GPUs ---
all_results = [None] * world_size
dist.all_gather_object(all_results, local_results)
# --- Final Processing and Logging (only on rank 0) ---
if rank == 0:
logger.info("Gathering and processing results from all GPUs...")
final_results = [item for sublist in all_results for item in sublist]
groundtruth_text_list = [data_utils.normalizer(res["gt_text"]) for res in final_results]
recognized_text_list = [data_utils.normalizer(res["decoded_text"]) for res in final_results]
results_table = wandb.Table(columns=["ID", "Ground Truth", "Response"])
for res in final_results:
results_table.add_data(res["sample_id"], res["gt_text"], res["decoded_text"])
wandb.log({"Speech-to-Text Response Examples": results_table})
wer, errors, words = calculate_WER(recognized_text_list, groundtruth_text_list)
logger.info(f"Final WER (EMOVA test): {wer:.4f} | Word Errors: {int(errors)} | Total Words: {int(words)}")
wandb.log({
"WER": wer,
"Total Word Errors": errors,
"Total Words": words
})
# --- Cleanup ---
if rank == 0:
wandb.finish()
cleanup_distributed()
if __name__ == '__main__':
main()