File size: 14,357 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
import editdistance
from functools import partial
import re
from normalizer import data_utils

os.environ["TOKENIZERS_PARALLELISM"] = "true"

from tqdm import tqdm
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP

import wandb
from datasets import load_dataset
from models import OMadaModelLM

from training.data import S2T_INSTRUCTION
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer

import argparse
import logging 

def setup_logger(rank):
    logger = logging.getLogger(__name__)
    if logger.hasHandlers():
        logger.handlers.clear()
    formatter = logging.Formatter(f'%(asctime)s - [RANK {rank}] - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
    ch = logging.StreamHandler()
    ch.setFormatter(formatter)
    logger.addHandler(ch)
    if rank == 0:
        logger.setLevel(logging.INFO)
    else:
        logger.setLevel(logging.WARNING)
    return logger

def calculate_WER(recognized_text_list, groundtruth_text_list):
    """Calculates the Word Error Rate (WER) between predicted and ground truth texts."""
    word_num = 0.0
    scores = 0.0
    for recognized_text, groundtruth_text in zip(recognized_text_list, groundtruth_text_list):
        recognized_text = recognized_text.lower()
        groundtruth_text = groundtruth_text.lower()
        recognized_text = re.sub(r"[^\w\s']", "", recognized_text)
        groundtruth_text = re.sub(r"[^\w\s']", "", groundtruth_text)
        
        recognized_word_list = recognized_text.split()
        groundtruth_word_list = groundtruth_text.split()
        
        current_word_num = len(groundtruth_word_list)
        word_num += current_word_num
        
        current_score = editdistance.eval(recognized_word_list, groundtruth_word_list)
        scores += current_score
        
    WER = scores / word_num if word_num > 0 else 0.0
    return WER, scores, word_num

# ### REMOVED ###: No longer need this function
# def get_vq_model_class(model_type): ...

def get_emova_dataset(logger):
    """Loads the EMOVA ASR/TTS evaluation dataset from Hugging Face."""
    logger.info("Loading EMOVA dataset (librispeech-asr-tts config)...")
    dataset = load_dataset("Emova-ollm/emova-asr-tts-eval", "librispeech-asr-tts", split='test')
    dataset = dataset.filter(lambda example: 'asr' in example['id'])
    logger.info(f"Dataset loaded successfully. Found {len(dataset)} ASR examples.")
    return dataset

def setup_distributed(rank, world_size):
    """Initializes the distributed process group."""
    dist.init_process_group("gloo", rank=rank, world_size=world_size)

def cleanup_distributed():
    """Cleans up the distributed process group."""
    dist.destroy_process_group()

# ### MODIFIED ###: Dataset class now parses speech tokens from string
class EMOVAAsrEvalDataset(Dataset):
    def __init__(self, hf_dataset, text_vocab_size, image_vocab_size):
        self.hf_dataset = hf_dataset
        self.text_vocab_size = text_vocab_size
        self.image_vocab_size = image_vocab_size
        # Pre-compile the regex for efficiency
        self.speech_token_pattern = re.compile(r'<\|speech_(\d+)\|>')

    def __len__(self):
        return len(self.hf_dataset)

    def __getitem__(self, idx):
        example = self.hf_dataset[idx]
        
        # Ground truth text is from the 'gpt' turn
        gt_text = example['conversations'][-1]['value']
        sample_id = example['id']

        # Audio tokens are in the 'human' turn as a string
        audio_token_string = example['conversations'][0]['value']
        
        # Parse the string to extract integer token IDs
        speech_token_ids_str = self.speech_token_pattern.findall(audio_token_string)
        # print(audio_token_string)
        # print(speech_token_ids_str)
        if not speech_token_ids_str:
            return None # Handle cases with no speech tokens
            
        speech_token_ids = torch.tensor([int(s) for s in speech_token_ids_str], dtype=torch.long)

        # Shift audio token IDs to the correct range for the multimodal model's vocabulary
        speech_token_ids += self.text_vocab_size + self.image_vocab_size

        return {
            # Unsqueeze to add a batch dimension (consistent with original vq_model.encode output)
            "speech_token_ids": speech_token_ids.unsqueeze(0),
            "gt_text": gt_text,
            "sample_id": sample_id
        }


def evaluation_collate_fn(batch, text_tokenizer, uni_prompting, config):
    batch = [b for b in batch if b is not None]
    if not batch:
        return None

    max_text_len = config.dataset.preprocessing.max_seq_length
    max_audio_len = config.dataset.preprocessing.max_aud_length + 1
    audio_pad_id = 126093
    sptids_dict = uni_prompting.sptids_dict
    
    batched_input_ids = [] 
    gt_texts = [item["gt_text"] for item in batch]
    sample_ids = [item["sample_id"] for item in batch]

    for item in batch:
        current_audio_tokens = item["speech_token_ids"]

        task_tensor = sptids_dict['<|s2t|>'].to('cpu').unsqueeze(0)
        soa_tensor = sptids_dict['<|soa|>'].to('cpu').unsqueeze(0)
        eoa_tensor = sptids_dict['<|eoa|>'].to('cpu').unsqueeze(0)

        effective_max_audio = max_audio_len - 3
        if current_audio_tokens.shape[1] > effective_max_audio:
            current_audio_tokens = current_audio_tokens[:, :effective_max_audio]
        
        audio_block = torch.cat([task_tensor, soa_tensor, current_audio_tokens, eoa_tensor], dim=1)
        
        num_padding = max_audio_len - audio_block.shape[1]
        if num_padding > 0:
            padding_tensor = torch.full((1, num_padding), audio_pad_id, dtype=torch.long)
            padded_audio_block = torch.cat([padding_tensor, audio_block], dim=1)
        else:
            padded_audio_block = audio_block

        chosen_prompt = random.choice(S2T_INSTRUCTION)
        prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{chosen_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
        
        prompt_encoding = text_tokenizer(
            prompt_text,
            max_length=max_text_len,
            truncation=True,
            return_tensors="pt"
        )
        prompt_tensor = prompt_encoding.input_ids

        final_sequence = torch.cat([padded_audio_block, prompt_tensor], dim=1)
        batched_input_ids.append(final_sequence.squeeze(0))

    pad_token_id = 126093
    max_len = max(seq.size(0) for seq in batched_input_ids)
    final_batch = torch.full((len(batched_input_ids), max_len), 
                             pad_token_id, 
                             dtype=torch.long)
    for i, seq in enumerate(batched_input_ids):
        final_batch[i, -len(seq):] = seq
    
    return {
        "input_ids": final_batch,
        "gt_texts": gt_texts,
        "sample_ids": sample_ids
    }

def main():
    """Main function to run the distributed evaluation."""
    rank = int(os.environ['RANK'])
    world_size = int(os.environ['WORLD_SIZE'])
    setup_distributed(rank, world_size)
    device = torch.device(f"cuda:{rank}")

    logger = setup_logger(rank)
    parser = argparse.ArgumentParser(description="Run DDP evaluation for MMadaModelLM on EMOVA dataset.")
    parser.add_argument('--train_step', type=int, required=True, help='WIP')
    parser.add_argument('--remasking', type=str, default='random', help='Remasking Strategy.')
    parser.add_argument('--generation_step', type=int, default=512, help='WIP')
    parser.add_argument('--new_tok', type=int, default=128, help='WIP')
    parser.add_argument('--block_length', type=int, default=64, help='WIP')
    # parser.add_argument('--ckpt_path', type=str, required=True, help='WIP')
    args, unknown = parser.parse_known_args()
    config = get_config()

    if rank == 0:
        run_id = config.wandb.get("run_id", None) or wandb.util.generate_id()
        config.wandb.run_id = run_id
        wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
        wandb.init(
            project="merging_grid",
            name=f'{config.experiment.name}-STEP-{args.train_step}-Remasking-{args.remasking}-GS-{args.generation_step}-NT-{args.new_tok}',
            config=wandb_config,
        )

    text_tokenizer = AutoTokenizer.from_pretrained(config.model.omada.pretrained_model_path, padding_side="left")
    
    uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                       special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                       ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
    
    # ### REMOVED ###: VQ Model is not needed anymore
    # vq_model_class = get_vq_model_class(config.model.vq_model_audio.type)
    # vq_model = vq_model_class.from_pretrained(config.model.vq_model_audio.vq_model_name).to(device)
    # vq_model.requires_grad_(False)
    # vq_model.eval()

    train_step = args.train_step
    # trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model/"
    trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1_2nd/checkpoint-50000/unwrapped_model"
    # trained_checkpoint_path = args.ckpt_path
    
    if rank == 0:
        logger.info(f"Loading trained model from: {trained_checkpoint_path}")

    model = OMadaModelLM.from_pretrained(
        trained_checkpoint_path, 
        trust_remote_code=True, 
        torch_dtype=torch.bfloat16,
        config="/home/work/AIDAS/ckpts/omada/omada-training-stage1/config.json"
    ).to(device)

    print("BEFORE DDP")
    model = DDP(model, device_ids=[rank], find_unused_parameters=True)
    print("AFTER DDP")
    if rank == 0:
        logger.info("✅ Trained model loaded and wrapped with DDP successfully!")

    text_vocab_size = len(uni_prompting.text_tokenizer)
    image_vocab_size = config.model.omada.codebook_size

    # --- Setup DataLoader ---
    hf_dataset = get_emova_dataset(logger)
    
    # ### MODIFIED ###: Pass only necessary arguments to the dataset class
    eval_dataset = EMOVAAsrEvalDataset(hf_dataset, text_vocab_size, image_vocab_size)
    sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank, shuffle=False)
    
    collate_for_eval = partial(
        evaluation_collate_fn,
        text_tokenizer=text_tokenizer,
        uni_prompting=uni_prompting,
        config=config
    )
    
    dataloader = DataLoader(
        eval_dataset,
        batch_size=16,
        sampler=sampler,
        num_workers=0,
        collate_fn=collate_for_eval,
        pin_memory=True
    )

    # --- Evaluation Loop ---
    local_results = []
    model.eval()
    
    progress_bar = tqdm(dataloader, desc="Evaluating on EMOVA ASR", disable=(rank != 0))
    for batch in progress_bar:
        if batch is None:
            continue
            
        input_ids = batch["input_ids"].to(device)
        gt_texts = batch["gt_texts"]
        sample_ids = batch["sample_ids"]

        # print(input_ids)
        # print(gt_texts)
        # print(sample_ids)

        with torch.no_grad():
            output_ids = model.module.mmu_generate(input_ids, max_new_tokens=args.new_tok, steps=args.generation_step, block_length=args.block_length, remasking=args.remasking)
            decoded_texts = text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)

            for i in range(len(decoded_texts)):
                local_results.append({
                    "sample_id": sample_ids[i],
                    "gt_text": gt_texts[i],
                    "decoded_text": decoded_texts[i]
                })

                if rank == 0 and i == 0 and len(local_results) % 10 == 1:
                    logger.info(f"\n--- Example ---")
                    logger.info(f"  ID: {sample_ids[i]}")
                    logger.info(f"  GT: {gt_texts[i]}") 
                    logger.info(f"  PD: {decoded_texts[i]}")
                    logger.info(f"-----------------\n")

    # --- Gather Results from All GPUs ---
    all_results = [None] * world_size
    dist.all_gather_object(all_results, local_results)

    # --- Final Processing and Logging (only on rank 0) ---
    if rank == 0:
        logger.info("Gathering and processing results from all GPUs...")
        final_results = [item for sublist in all_results for item in sublist]
        
        groundtruth_text_list = [data_utils.normalizer(res["gt_text"]) for res in final_results]
        recognized_text_list = [data_utils.normalizer(res["decoded_text"]) for res in final_results]
        
        results_table = wandb.Table(columns=["ID", "Ground Truth", "Response"])
        for res in final_results:
            results_table.add_data(res["sample_id"], res["gt_text"], res["decoded_text"])

        wandb.log({"Speech-to-Text Response Examples": results_table})
        
        wer, errors, words = calculate_WER(recognized_text_list, groundtruth_text_list)
        logger.info(f"Final WER (EMOVA test): {wer:.4f}  | Word Errors: {int(errors)}  | Total Words: {int(words)}")

        wandb.log({
            "WER": wer,
            "Total Word Errors": errors,
            "Total Words": words
        })

    # --- Cleanup ---
    if rank == 0:
        wandb.finish()
    cleanup_distributed()

if __name__ == '__main__':
    main()