Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,357 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import editdistance
from functools import partial
import re
from normalizer import data_utils
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from tqdm import tqdm
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import wandb
from datasets import load_dataset
from models import OMadaModelLM
from training.data import S2T_INSTRUCTION
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer
import argparse
import logging
def setup_logger(rank):
logger = logging.getLogger(__name__)
if logger.hasHandlers():
logger.handlers.clear()
formatter = logging.Formatter(f'%(asctime)s - [RANK {rank}] - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
if rank == 0:
logger.setLevel(logging.INFO)
else:
logger.setLevel(logging.WARNING)
return logger
def calculate_WER(recognized_text_list, groundtruth_text_list):
"""Calculates the Word Error Rate (WER) between predicted and ground truth texts."""
word_num = 0.0
scores = 0.0
for recognized_text, groundtruth_text in zip(recognized_text_list, groundtruth_text_list):
recognized_text = recognized_text.lower()
groundtruth_text = groundtruth_text.lower()
recognized_text = re.sub(r"[^\w\s']", "", recognized_text)
groundtruth_text = re.sub(r"[^\w\s']", "", groundtruth_text)
recognized_word_list = recognized_text.split()
groundtruth_word_list = groundtruth_text.split()
current_word_num = len(groundtruth_word_list)
word_num += current_word_num
current_score = editdistance.eval(recognized_word_list, groundtruth_word_list)
scores += current_score
WER = scores / word_num if word_num > 0 else 0.0
return WER, scores, word_num
# ### REMOVED ###: No longer need this function
# def get_vq_model_class(model_type): ...
def get_emova_dataset(logger):
"""Loads the EMOVA ASR/TTS evaluation dataset from Hugging Face."""
logger.info("Loading EMOVA dataset (librispeech-asr-tts config)...")
dataset = load_dataset("Emova-ollm/emova-asr-tts-eval", "librispeech-asr-tts", split='test')
dataset = dataset.filter(lambda example: 'asr' in example['id'])
logger.info(f"Dataset loaded successfully. Found {len(dataset)} ASR examples.")
return dataset
def setup_distributed(rank, world_size):
"""Initializes the distributed process group."""
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup_distributed():
"""Cleans up the distributed process group."""
dist.destroy_process_group()
# ### MODIFIED ###: Dataset class now parses speech tokens from string
class EMOVAAsrEvalDataset(Dataset):
def __init__(self, hf_dataset, text_vocab_size, image_vocab_size):
self.hf_dataset = hf_dataset
self.text_vocab_size = text_vocab_size
self.image_vocab_size = image_vocab_size
# Pre-compile the regex for efficiency
self.speech_token_pattern = re.compile(r'<\|speech_(\d+)\|>')
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
example = self.hf_dataset[idx]
# Ground truth text is from the 'gpt' turn
gt_text = example['conversations'][-1]['value']
sample_id = example['id']
# Audio tokens are in the 'human' turn as a string
audio_token_string = example['conversations'][0]['value']
# Parse the string to extract integer token IDs
speech_token_ids_str = self.speech_token_pattern.findall(audio_token_string)
# print(audio_token_string)
# print(speech_token_ids_str)
if not speech_token_ids_str:
return None # Handle cases with no speech tokens
speech_token_ids = torch.tensor([int(s) for s in speech_token_ids_str], dtype=torch.long)
# Shift audio token IDs to the correct range for the multimodal model's vocabulary
speech_token_ids += self.text_vocab_size + self.image_vocab_size
return {
# Unsqueeze to add a batch dimension (consistent with original vq_model.encode output)
"speech_token_ids": speech_token_ids.unsqueeze(0),
"gt_text": gt_text,
"sample_id": sample_id
}
def evaluation_collate_fn(batch, text_tokenizer, uni_prompting, config):
batch = [b for b in batch if b is not None]
if not batch:
return None
max_text_len = config.dataset.preprocessing.max_seq_length
max_audio_len = config.dataset.preprocessing.max_aud_length + 1
audio_pad_id = 126093
sptids_dict = uni_prompting.sptids_dict
batched_input_ids = []
gt_texts = [item["gt_text"] for item in batch]
sample_ids = [item["sample_id"] for item in batch]
for item in batch:
current_audio_tokens = item["speech_token_ids"]
task_tensor = sptids_dict['<|s2t|>'].to('cpu').unsqueeze(0)
soa_tensor = sptids_dict['<|soa|>'].to('cpu').unsqueeze(0)
eoa_tensor = sptids_dict['<|eoa|>'].to('cpu').unsqueeze(0)
effective_max_audio = max_audio_len - 3
if current_audio_tokens.shape[1] > effective_max_audio:
current_audio_tokens = current_audio_tokens[:, :effective_max_audio]
audio_block = torch.cat([task_tensor, soa_tensor, current_audio_tokens, eoa_tensor], dim=1)
num_padding = max_audio_len - audio_block.shape[1]
if num_padding > 0:
padding_tensor = torch.full((1, num_padding), audio_pad_id, dtype=torch.long)
padded_audio_block = torch.cat([padding_tensor, audio_block], dim=1)
else:
padded_audio_block = audio_block
chosen_prompt = random.choice(S2T_INSTRUCTION)
prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{chosen_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
prompt_encoding = text_tokenizer(
prompt_text,
max_length=max_text_len,
truncation=True,
return_tensors="pt"
)
prompt_tensor = prompt_encoding.input_ids
final_sequence = torch.cat([padded_audio_block, prompt_tensor], dim=1)
batched_input_ids.append(final_sequence.squeeze(0))
pad_token_id = 126093
max_len = max(seq.size(0) for seq in batched_input_ids)
final_batch = torch.full((len(batched_input_ids), max_len),
pad_token_id,
dtype=torch.long)
for i, seq in enumerate(batched_input_ids):
final_batch[i, -len(seq):] = seq
return {
"input_ids": final_batch,
"gt_texts": gt_texts,
"sample_ids": sample_ids
}
def main():
"""Main function to run the distributed evaluation."""
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
setup_distributed(rank, world_size)
device = torch.device(f"cuda:{rank}")
logger = setup_logger(rank)
parser = argparse.ArgumentParser(description="Run DDP evaluation for MMadaModelLM on EMOVA dataset.")
parser.add_argument('--train_step', type=int, required=True, help='WIP')
parser.add_argument('--remasking', type=str, default='random', help='Remasking Strategy.')
parser.add_argument('--generation_step', type=int, default=512, help='WIP')
parser.add_argument('--new_tok', type=int, default=128, help='WIP')
parser.add_argument('--block_length', type=int, default=64, help='WIP')
# parser.add_argument('--ckpt_path', type=str, required=True, help='WIP')
args, unknown = parser.parse_known_args()
config = get_config()
if rank == 0:
run_id = config.wandb.get("run_id", None) or wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="merging_grid",
name=f'{config.experiment.name}-STEP-{args.train_step}-Remasking-{args.remasking}-GS-{args.generation_step}-NT-{args.new_tok}',
config=wandb_config,
)
text_tokenizer = AutoTokenizer.from_pretrained(config.model.omada.pretrained_model_path, padding_side="left")
uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
# ### REMOVED ###: VQ Model is not needed anymore
# vq_model_class = get_vq_model_class(config.model.vq_model_audio.type)
# vq_model = vq_model_class.from_pretrained(config.model.vq_model_audio.vq_model_name).to(device)
# vq_model.requires_grad_(False)
# vq_model.eval()
train_step = args.train_step
# trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model/"
trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1_2nd/checkpoint-50000/unwrapped_model"
# trained_checkpoint_path = args.ckpt_path
if rank == 0:
logger.info(f"Loading trained model from: {trained_checkpoint_path}")
model = OMadaModelLM.from_pretrained(
trained_checkpoint_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
config="/home/work/AIDAS/ckpts/omada/omada-training-stage1/config.json"
).to(device)
print("BEFORE DDP")
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
print("AFTER DDP")
if rank == 0:
logger.info("✅ Trained model loaded and wrapped with DDP successfully!")
text_vocab_size = len(uni_prompting.text_tokenizer)
image_vocab_size = config.model.omada.codebook_size
# --- Setup DataLoader ---
hf_dataset = get_emova_dataset(logger)
# ### MODIFIED ###: Pass only necessary arguments to the dataset class
eval_dataset = EMOVAAsrEvalDataset(hf_dataset, text_vocab_size, image_vocab_size)
sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank, shuffle=False)
collate_for_eval = partial(
evaluation_collate_fn,
text_tokenizer=text_tokenizer,
uni_prompting=uni_prompting,
config=config
)
dataloader = DataLoader(
eval_dataset,
batch_size=16,
sampler=sampler,
num_workers=0,
collate_fn=collate_for_eval,
pin_memory=True
)
# --- Evaluation Loop ---
local_results = []
model.eval()
progress_bar = tqdm(dataloader, desc="Evaluating on EMOVA ASR", disable=(rank != 0))
for batch in progress_bar:
if batch is None:
continue
input_ids = batch["input_ids"].to(device)
gt_texts = batch["gt_texts"]
sample_ids = batch["sample_ids"]
# print(input_ids)
# print(gt_texts)
# print(sample_ids)
with torch.no_grad():
output_ids = model.module.mmu_generate(input_ids, max_new_tokens=args.new_tok, steps=args.generation_step, block_length=args.block_length, remasking=args.remasking)
decoded_texts = text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
for i in range(len(decoded_texts)):
local_results.append({
"sample_id": sample_ids[i],
"gt_text": gt_texts[i],
"decoded_text": decoded_texts[i]
})
if rank == 0 and i == 0 and len(local_results) % 10 == 1:
logger.info(f"\n--- Example ---")
logger.info(f" ID: {sample_ids[i]}")
logger.info(f" GT: {gt_texts[i]}")
logger.info(f" PD: {decoded_texts[i]}")
logger.info(f"-----------------\n")
# --- Gather Results from All GPUs ---
all_results = [None] * world_size
dist.all_gather_object(all_results, local_results)
# --- Final Processing and Logging (only on rank 0) ---
if rank == 0:
logger.info("Gathering and processing results from all GPUs...")
final_results = [item for sublist in all_results for item in sublist]
groundtruth_text_list = [data_utils.normalizer(res["gt_text"]) for res in final_results]
recognized_text_list = [data_utils.normalizer(res["decoded_text"]) for res in final_results]
results_table = wandb.Table(columns=["ID", "Ground Truth", "Response"])
for res in final_results:
results_table.add_data(res["sample_id"], res["gt_text"], res["decoded_text"])
wandb.log({"Speech-to-Text Response Examples": results_table})
wer, errors, words = calculate_WER(recognized_text_list, groundtruth_text_list)
logger.info(f"Final WER (EMOVA test): {wer:.4f} | Word Errors: {int(errors)} | Total Words: {int(words)}")
wandb.log({
"WER": wer,
"Total Word Errors": errors,
"Total Words": words
})
# --- Cleanup ---
if rank == 0:
wandb.finish()
cleanup_distributed()
if __name__ == '__main__':
main() |