jaeikkim
Reinit Space without binary assets
7bfbdc3
#!/usr/bin/env python3
"""
체크 방법
=========
python check_audio_tokens.py \
--config configs/omada_instruction_tuning.yaml \
--samples 20
"""
import argparse
import random
from pathlib import Path
from typing import Iterable, Optional, Tuple, Union
import numpy as np
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import AutoTokenizer
from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer
from training.data import MixedSpeechTextDataset, VideoSpeechDataset
from training.prompting_utils import UniversalPrompting
from training.utils import image_transform
import sys, os
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def _to_tensor(entry: Union[torch.Tensor, np.ndarray, list, tuple, str],
vq_model: EMOVASpeechTokenizer) -> torch.Tensor:
"""entry가 경로면 encode, 이미 토큰이면 long tensor로 변환."""
if isinstance(entry, torch.Tensor):
tokens = entry.clone().long()
elif isinstance(entry, np.ndarray):
tokens = torch.from_numpy(entry).long()
elif isinstance(entry, (list, tuple)):
tokens = torch.as_tensor(entry, dtype=torch.long)
elif isinstance(entry, str):
# EMOVA encode는 (1, L) 반환 → 1D로 변환
tokens = vq_model.encode(entry).squeeze(0).long()
else:
raise TypeError(f"Unsupported token entry type: {type(entry)}")
return tokens.view(-1)
def _log_stats(flow: str, path: str, tokens: torch.Tensor,
codebook_size: int = 4096) -> Tuple[int, int]:
max_id = int(tokens.max().item())
min_id = int(tokens.min().item())
over = int((tokens >= codebook_size).sum().item())
under = int((tokens < 0).sum().item())
print(
f"[{flow}] path={path} "
f"shape={tuple(tokens.shape)} "
f"min={min_id} max={max_id} "
f"<0={under} >=4096={over}"
)
return over, under
def build_prompting(config) -> UniversalPrompting:
tokenizer = AutoTokenizer.from_pretrained(
config.model.omada.tokenizer_path,
padding_side="left",
)
special_tokens = (
"<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>",
"<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>",
"<|i2i|>", "<|v2t|>", "<|v2s|>", "<|s2t|>",
"<|t2s|>", "<|s2s|>", "<|soa|>", "<|eoa|>",
)
prompt = UniversalPrompting(
tokenizer,
max_text_len=config.dataset.preprocessing.max_seq_length,
max_audio_len=config.dataset.preprocessing.max_aud_length,
max_audio_len_short=config.dataset.preprocessing.max_aud_length_short,
ignore_id=-100,
cond_dropout_prob=config.training.cond_dropout_prob,
special_tokens=special_tokens,
use_reserved_token=True,
)
return prompt
def sample_indices(length: int, num: int) -> Tuple[Iterable[int], int]:
"""
Returns iterable of indices and the total count that will be iterated.
If num <= 0 or num >= length, iterates through the whole dataset.
"""
if num is None or num <= 0 or num >= length:
return range(length), length
indices = random.sample(range(length), num)
return indices, len(indices)
@torch.no_grad()
def inspect_v2s(config, prompting, vq_model, num_samples: int):
speech_cfg = OmegaConf.to_container(
config.dataset.params.get("video_speech_dataset", {}),
resolve=True
) or {}
dataset = VideoSpeechDataset(
transform=image_transform,
resolution=config.dataset.preprocessing.resolution,
num_frames=speech_cfg.get("num_frames_speech", 4),
video_root=speech_cfg.get(
"video_root", "/home/work/AIDAS/data/video/openvid1m/video/video"
),
audio_root=speech_cfg.get(
"audio_root", "/home/work/AIDAS/data/video-speech"
),
speech_dir_name=speech_cfg.get("speech_dir_name", "openvid-speech-trunc"),
index_path=speech_cfg.get(
"index_path", "/home/work/AIDAS/data/video-speech/openvid-speech.csv"
),
sample_method=speech_cfg.get("sample_method", "uniform"),
precomputed_tokens_root=speech_cfg.get("precomputed_tokens_root"),
)
print(f"\n=== VideoSpeechDataset (v2s) | total={len(dataset)} ===")
total_over = total_under = 0
indices, total = sample_indices(len(dataset), num_samples)
for idx in tqdm(indices, total=total, desc="v2s audio", unit="sample"):
sample = dataset.data[idx]
speech_path = sample["speech"]
tokens = dataset._load_precomputed_tokens(speech_path)
if tokens is not None:
tokens = tokens.long()
else:
tokens = vq_model.encode(speech_path).squeeze(0).long()
over, under = _log_stats("v2s", speech_path, tokens)
total_over += over
total_under += under
print(f"[v2s] total >=4096: {total_over} | total <0: {total_under}")
@torch.no_grad()
def inspect_t2s(config, prompting, vq_model, num_samples: int):
dataset = MixedSpeechTextDataset(config.dataset.params.audio_data)
print(f"\n=== MixedSpeechTextDataset (t2s/s2t 공용) | total={len(dataset)} ===")
total_over = total_under = 0
indices, total = sample_indices(len(dataset), num_samples)
for idx in tqdm(indices, total=total, desc="t2s/s2t audio", unit="sample"):
sample = dataset[idx]
entry = sample["audio_path"]
if isinstance(entry, np.ndarray):
tokens = torch.from_numpy(entry).long()
path_repr = "<precomputed-array>"
elif isinstance(entry, str):
tokens = vq_model.encode(entry).squeeze(0).long()
path_repr = entry
else:
tokens = torch.as_tensor(entry, dtype=torch.long)
path_repr = "<sequence>"
over, under = _log_stats("t2s/s2t-source", path_repr, tokens)
total_over += over
total_under += under
print(f"[t2s] total >=4096: {total_over} | total <0: {total_under}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True,
help="학습에 사용한 YAML 설정 파일")
parser.add_argument(
"--samples",
type=int,
default=-1,
help="각 데이터셋에서 검사할 샘플 수 (<=0이면 전체 검사)",
)
args = parser.parse_args()
config = OmegaConf.load(args.config)
prompting = build_prompting(config)
vq_model = EMOVASpeechTokenizer.from_pretrained(
config.model.vq_model_audio.vq_model_name
)
vq_model.eval()
inspect_v2s(config, prompting, vq_model, args.samples)
# inspect_t2s(config, prompting, vq_model, args.samples)
if __name__ == "__main__":
torch.manual_seed(0)
random.seed(0)
main()