Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,808 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/env python3
"""
체크 방법
=========
python check_audio_tokens.py \
--config configs/omada_instruction_tuning.yaml \
--samples 20
"""
import argparse
import random
from pathlib import Path
from typing import Iterable, Optional, Tuple, Union
import numpy as np
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from transformers import AutoTokenizer
from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer
from training.data import MixedSpeechTextDataset, VideoSpeechDataset
from training.prompting_utils import UniversalPrompting
from training.utils import image_transform
import sys, os
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def _to_tensor(entry: Union[torch.Tensor, np.ndarray, list, tuple, str],
vq_model: EMOVASpeechTokenizer) -> torch.Tensor:
"""entry가 경로면 encode, 이미 토큰이면 long tensor로 변환."""
if isinstance(entry, torch.Tensor):
tokens = entry.clone().long()
elif isinstance(entry, np.ndarray):
tokens = torch.from_numpy(entry).long()
elif isinstance(entry, (list, tuple)):
tokens = torch.as_tensor(entry, dtype=torch.long)
elif isinstance(entry, str):
# EMOVA encode는 (1, L) 반환 → 1D로 변환
tokens = vq_model.encode(entry).squeeze(0).long()
else:
raise TypeError(f"Unsupported token entry type: {type(entry)}")
return tokens.view(-1)
def _log_stats(flow: str, path: str, tokens: torch.Tensor,
codebook_size: int = 4096) -> Tuple[int, int]:
max_id = int(tokens.max().item())
min_id = int(tokens.min().item())
over = int((tokens >= codebook_size).sum().item())
under = int((tokens < 0).sum().item())
print(
f"[{flow}] path={path} "
f"shape={tuple(tokens.shape)} "
f"min={min_id} max={max_id} "
f"<0={under} >=4096={over}"
)
return over, under
def build_prompting(config) -> UniversalPrompting:
tokenizer = AutoTokenizer.from_pretrained(
config.model.omada.tokenizer_path,
padding_side="left",
)
special_tokens = (
"<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>",
"<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>",
"<|i2i|>", "<|v2t|>", "<|v2s|>", "<|s2t|>",
"<|t2s|>", "<|s2s|>", "<|soa|>", "<|eoa|>",
)
prompt = UniversalPrompting(
tokenizer,
max_text_len=config.dataset.preprocessing.max_seq_length,
max_audio_len=config.dataset.preprocessing.max_aud_length,
max_audio_len_short=config.dataset.preprocessing.max_aud_length_short,
ignore_id=-100,
cond_dropout_prob=config.training.cond_dropout_prob,
special_tokens=special_tokens,
use_reserved_token=True,
)
return prompt
def sample_indices(length: int, num: int) -> Tuple[Iterable[int], int]:
"""
Returns iterable of indices and the total count that will be iterated.
If num <= 0 or num >= length, iterates through the whole dataset.
"""
if num is None or num <= 0 or num >= length:
return range(length), length
indices = random.sample(range(length), num)
return indices, len(indices)
@torch.no_grad()
def inspect_v2s(config, prompting, vq_model, num_samples: int):
speech_cfg = OmegaConf.to_container(
config.dataset.params.get("video_speech_dataset", {}),
resolve=True
) or {}
dataset = VideoSpeechDataset(
transform=image_transform,
resolution=config.dataset.preprocessing.resolution,
num_frames=speech_cfg.get("num_frames_speech", 4),
video_root=speech_cfg.get(
"video_root", "/home/work/AIDAS/data/video/openvid1m/video/video"
),
audio_root=speech_cfg.get(
"audio_root", "/home/work/AIDAS/data/video-speech"
),
speech_dir_name=speech_cfg.get("speech_dir_name", "openvid-speech-trunc"),
index_path=speech_cfg.get(
"index_path", "/home/work/AIDAS/data/video-speech/openvid-speech.csv"
),
sample_method=speech_cfg.get("sample_method", "uniform"),
precomputed_tokens_root=speech_cfg.get("precomputed_tokens_root"),
)
print(f"\n=== VideoSpeechDataset (v2s) | total={len(dataset)} ===")
total_over = total_under = 0
indices, total = sample_indices(len(dataset), num_samples)
for idx in tqdm(indices, total=total, desc="v2s audio", unit="sample"):
sample = dataset.data[idx]
speech_path = sample["speech"]
tokens = dataset._load_precomputed_tokens(speech_path)
if tokens is not None:
tokens = tokens.long()
else:
tokens = vq_model.encode(speech_path).squeeze(0).long()
over, under = _log_stats("v2s", speech_path, tokens)
total_over += over
total_under += under
print(f"[v2s] total >=4096: {total_over} | total <0: {total_under}")
@torch.no_grad()
def inspect_t2s(config, prompting, vq_model, num_samples: int):
dataset = MixedSpeechTextDataset(config.dataset.params.audio_data)
print(f"\n=== MixedSpeechTextDataset (t2s/s2t 공용) | total={len(dataset)} ===")
total_over = total_under = 0
indices, total = sample_indices(len(dataset), num_samples)
for idx in tqdm(indices, total=total, desc="t2s/s2t audio", unit="sample"):
sample = dataset[idx]
entry = sample["audio_path"]
if isinstance(entry, np.ndarray):
tokens = torch.from_numpy(entry).long()
path_repr = "<precomputed-array>"
elif isinstance(entry, str):
tokens = vq_model.encode(entry).squeeze(0).long()
path_repr = entry
else:
tokens = torch.as_tensor(entry, dtype=torch.long)
path_repr = "<sequence>"
over, under = _log_stats("t2s/s2t-source", path_repr, tokens)
total_over += over
total_under += under
print(f"[t2s] total >=4096: {total_over} | total <0: {total_under}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True,
help="학습에 사용한 YAML 설정 파일")
parser.add_argument(
"--samples",
type=int,
default=-1,
help="각 데이터셋에서 검사할 샘플 수 (<=0이면 전체 검사)",
)
args = parser.parse_args()
config = OmegaConf.load(args.config)
prompting = build_prompting(config)
vq_model = EMOVASpeechTokenizer.from_pretrained(
config.model.vq_model_audio.vq_model_name
)
vq_model.eval()
inspect_v2s(config, prompting, vq_model, args.samples)
# inspect_t2s(config, prompting, vq_model, args.samples)
if __name__ == "__main__":
torch.manual_seed(0)
random.seed(0)
main()
|