MentorFlow / app.py
CorneliusWang's picture
Update app.py
61fe8fc verified
"""
Gradio app for MentorFlow - Teacher-Student RL System
Deployed on Hugging Face Spaces with GPU support
"""
import sys
import os
import subprocess
from pathlib import Path
import gradio as gr # Import directly, do not use the patch
# Add project paths
sys.path.insert(0, str(Path(__file__).parent))
sys.path.insert(0, str(Path(__file__).parent / "teacher_agent_dev"))
sys.path.insert(0, str(Path(__file__).parent / "student_agent_dev"))
def run_comparison(iterations: int, seed: int, use_deterministic: bool, device: str):
"""
Run strategy comparison with LM Student.
"""
# Set device environment variable for subprocess
# On Hugging Face Spaces with GPU, try to use CUDA
if device == "cuda":
try:
import torch
# Check if CUDA is available
if torch.cuda.is_available():
try:
# Try to get device name to verify GPU works
gpu_name = torch.cuda.get_device_name(0)
gpu_count = torch.cuda.device_count()
print(f"βœ… GPU available: {gpu_name} (Count: {gpu_count})")
# Keep device as "cuda"
except Exception as e:
print(f"⚠️ GPU detection failed: {e}")
print(" Attempting to use CUDA anyway (may work)...")
else:
print("⚠️ CUDA not available, falling back to CPU")
device = "cpu"
except ImportError:
print("⚠️ PyTorch not available, falling back to CPU")
device = "cpu"
except Exception as e:
print(f"⚠️ GPU check error: {e}, falling back to CPU")
device = "cpu"
# Set environment variable for subprocess to pick up
os.environ["CUDA_DEVICE"] = device
print(f"πŸ”§ Using device: {device}")
# Prepare command
cmd = [
sys.executable,
"teacher_agent_dev/compare_strategies.py",
"--iterations", str(iterations),
]
if use_deterministic:
cmd.append("--deterministic")
else:
cmd.extend(["--seed", str(int(seed))])
try:
# Ensure environment variables are passed to subprocess
env = os.environ.copy()
env["CUDA_DEVICE"] = os.environ.get("CUDA_DEVICE", device)
result = subprocess.run(
cmd,
cwd=str(Path(__file__).parent),
env=env, # Pass environment variables
capture_output=True,
text=True,
timeout=3600 # 1 hour timeout
)
stdout_text = result.stdout
stderr_text = result.stderr
# Combine outputs
full_output = f"=== STDOUT ===\n{stdout_text}\n\n=== STDERR ===\n{stderr_text}"
if result.returncode != 0:
return f"❌ Error occurred:\n{full_output}", None
# Find output plot (check multiple possible locations)
plot_paths = [
Path(__file__).parent / "teacher_agent_dev" / "comparison_all_strategies.png",
Path(__file__).parent / "comparison_all_strategies.png",
Path.cwd() / "teacher_agent_dev" / "comparison_all_strategies.png",
]
plot_path = None
for path in plot_paths:
if path.exists():
plot_path = path
break
if plot_path:
return f"βœ… Comparison complete!\n\n{stdout_text}", str(plot_path)
else:
# Return output even if plot not found (might still be useful)
error_msg = f"⚠️ Plot not found at expected locations.\n"
error_msg += f"Checked: {[str(p) for p in plot_paths]}\n\n"
error_msg += f"Output:\n{full_output}"
return error_msg, None
except subprocess.TimeoutExpired:
return "❌ Timeout: Comparison took longer than 1 hour", None
except Exception as e:
import traceback
return f"❌ Error: {str(e)}\n\n{traceback.format_exc()}", None
def check_gpu():
"""Check if GPU is available on Hugging Face Spaces."""
try:
import torch
# Check CUDA availability
if torch.cuda.is_available():
try:
gpu_name = torch.cuda.get_device_name(0)
gpu_count = torch.cuda.device_count()
cuda_version = torch.version.cuda
return f"βœ… GPU Available: {gpu_name} (Count: {gpu_count}, CUDA: {cuda_version})"
except Exception as e:
# GPU might be available but not immediately accessible
return f"βœ… GPU Detected (accessing: {str(e)[:50]}...)"
else:
# On Hugging Face Spaces, check environment
if os.getenv("SPACE_ID"):
# Check if GPU hardware is allocated
hf_hardware = os.getenv("SPACE_HARDWARE", "unknown")
if "gpu" in hf_hardware.lower() or "t4" in hf_hardware.lower() or "l4" in hf_hardware.lower():
return f"⚠️ GPU Hardware ({hf_hardware}) allocated but not accessible yet. Try running anyway."
return f"⚠️ No GPU on this Space (hardware: {hf_hardware}). Please configure GPU tier."
return "⚠️ No GPU available, will use CPU"
except ImportError:
return "⚠️ PyTorch not installed"
except Exception as e:
return f"⚠️ GPU check error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
gr.Markdown("""
# πŸŽ“ MentorFlow - Teacher-Student RL System
Compare three training strategies using LM Student (DistilBERT):
1. **Random Strategy**: Random questions until student can pass difficult questions
2. **Progressive Strategy**: Easy β†’ Medium β†’ Hard within each family
3. **Teacher Strategy**: RL teacher agent learns optimal curriculum
## Usage
1. Set parameters below
2. Click "Run Comparison" to start training
3. View results and generated plots
**Note**: With LM Student, this will take 15-30 minutes for 500 iterations.
""")
# GPU Status
with gr.Row():
gpu_status = gr.Textbox(label="GPU Status", value=check_gpu(), interactive=False)
refresh_btn = gr.Button("πŸ”„ Refresh GPU Status")
refresh_btn.click(fn=check_gpu, outputs=gpu_status, api_name="check_gpu")
# Parameters
with gr.Row():
with gr.Column():
iterations = gr.Slider(
minimum=50,
maximum=500,
value=100,
step=50,
label="Iterations",
info="Number of training iterations (higher = longer runtime)"
)
seed = gr.Number(
value=42,
label="Random Seed",
info="Seed for reproducibility (ignored if deterministic)"
)
use_deterministic = gr.Checkbox(
value=True,
label="Deterministic Mode",
info="Use fixed seed=42 for reproducible results"
)
device = gr.Radio(
choices=["cuda", "cpu"],
value="cuda", # Default to GPU for HF Spaces with Nvidia 4xL4
label="Device",
info="GPU (cuda) recommended for Nvidia 4xL4, CPU fallback available"
)
with gr.Column():
run_btn = gr.Button("πŸš€ Run Comparison", variant="primary", size="lg")
# Output
with gr.Row():
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Output",
lines=15,
max_lines=30,
interactive=False
)
with gr.Column(scale=1):
output_plot = gr.Image(
label="Comparison Plot",
type="filepath",
height=500
)
# Run comparison
run_btn.click(
fn=run_comparison,
inputs=[iterations, seed, use_deterministic, device],
outputs=[output_text, output_plot],
api_name="run_comparison"
)
gr.Markdown("""
## πŸ“Š Understanding Results
The comparison plot shows:
- **Learning Curves**: How each strategy improves over time
- **Difficult Question Performance**: Accuracy on hard questions
- **Curriculum Diversity**: Topic coverage over time
- **Learning Efficiency**: Iterations to reach target vs final performance
The **Teacher Strategy** should ideally outperform Random and Progressive strategies.
""")
if __name__ == "__main__":
# Ensure the app binds to all interfaces for HF Spaces
demo.launch(server_name="0.0.0.0", server_port=7860)