Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import sys
|
|
| 7 |
import os
|
| 8 |
import subprocess
|
| 9 |
from pathlib import Path
|
| 10 |
-
import gradio as gr # Import directly,
|
| 11 |
|
| 12 |
# Add project paths
|
| 13 |
sys.path.insert(0, str(Path(__file__).parent))
|
|
@@ -20,16 +20,21 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
# Set device environment variable for subprocess
|
|
|
|
| 23 |
if device == "cuda":
|
| 24 |
try:
|
| 25 |
import torch
|
|
|
|
| 26 |
if torch.cuda.is_available():
|
| 27 |
try:
|
|
|
|
| 28 |
gpu_name = torch.cuda.get_device_name(0)
|
| 29 |
gpu_count = torch.cuda.device_count()
|
| 30 |
print(f"β
GPU available: {gpu_name} (Count: {gpu_count})")
|
|
|
|
| 31 |
except Exception as e:
|
| 32 |
print(f"β οΈ GPU detection failed: {e}")
|
|
|
|
| 33 |
else:
|
| 34 |
print("β οΈ CUDA not available, falling back to CPU")
|
| 35 |
device = "cpu"
|
|
@@ -40,7 +45,7 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 40 |
print(f"β οΈ GPU check error: {e}, falling back to CPU")
|
| 41 |
device = "cpu"
|
| 42 |
|
| 43 |
-
# Set environment variable for subprocess
|
| 44 |
os.environ["CUDA_DEVICE"] = device
|
| 45 |
print(f"π§ Using device: {device}")
|
| 46 |
|
|
@@ -57,13 +62,14 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 57 |
cmd.extend(["--seed", str(int(seed))])
|
| 58 |
|
| 59 |
try:
|
|
|
|
| 60 |
env = os.environ.copy()
|
| 61 |
env["CUDA_DEVICE"] = os.environ.get("CUDA_DEVICE", device)
|
| 62 |
|
| 63 |
result = subprocess.run(
|
| 64 |
cmd,
|
| 65 |
cwd=str(Path(__file__).parent),
|
| 66 |
-
env=env,
|
| 67 |
capture_output=True,
|
| 68 |
text=True,
|
| 69 |
timeout=3600 # 1 hour timeout
|
|
@@ -72,12 +78,13 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 72 |
stdout_text = result.stdout
|
| 73 |
stderr_text = result.stderr
|
| 74 |
|
|
|
|
| 75 |
full_output = f"=== STDOUT ===\n{stdout_text}\n\n=== STDERR ===\n{stderr_text}"
|
| 76 |
|
| 77 |
if result.returncode != 0:
|
| 78 |
return f"β Error occurred:\n{full_output}", None
|
| 79 |
|
| 80 |
-
#
|
| 81 |
plot_paths = [
|
| 82 |
Path(__file__).parent / "teacher_agent_dev" / "comparison_all_strategies.png",
|
| 83 |
Path(__file__).parent / "comparison_all_strategies.png",
|
|
@@ -93,6 +100,7 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 93 |
if plot_path:
|
| 94 |
return f"β
Comparison complete!\n\n{stdout_text}", str(plot_path)
|
| 95 |
else:
|
|
|
|
| 96 |
error_msg = f"β οΈ Plot not found at expected locations.\n"
|
| 97 |
error_msg += f"Checked: {[str(p) for p in plot_paths]}\n\n"
|
| 98 |
error_msg += f"Output:\n{full_output}"
|
|
@@ -109,6 +117,8 @@ def check_gpu():
|
|
| 109 |
"""Check if GPU is available on Hugging Face Spaces."""
|
| 110 |
try:
|
| 111 |
import torch
|
|
|
|
|
|
|
| 112 |
if torch.cuda.is_available():
|
| 113 |
try:
|
| 114 |
gpu_name = torch.cuda.get_device_name(0)
|
|
@@ -116,9 +126,12 @@ def check_gpu():
|
|
| 116 |
cuda_version = torch.version.cuda
|
| 117 |
return f"β
GPU Available: {gpu_name} (Count: {gpu_count}, CUDA: {cuda_version})"
|
| 118 |
except Exception as e:
|
|
|
|
| 119 |
return f"β
GPU Detected (accessing: {str(e)[:50]}...)"
|
| 120 |
else:
|
|
|
|
| 121 |
if os.getenv("SPACE_ID"):
|
|
|
|
| 122 |
hf_hardware = os.getenv("SPACE_HARDWARE", "unknown")
|
| 123 |
if "gpu" in hf_hardware.lower() or "t4" in hf_hardware.lower() or "l4" in hf_hardware.lower():
|
| 124 |
return f"β οΈ GPU Hardware ({hf_hardware}) allocated but not accessible yet. Try running anyway."
|
|
@@ -141,9 +154,12 @@ with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
|
|
| 141 |
3. **Teacher Strategy**: RL teacher agent learns optimal curriculum
|
| 142 |
|
| 143 |
## Usage
|
|
|
|
| 144 |
1. Set parameters below
|
| 145 |
2. Click "Run Comparison" to start training
|
| 146 |
3. View results and generated plots
|
|
|
|
|
|
|
| 147 |
""")
|
| 148 |
|
| 149 |
# GPU Status
|
|
@@ -156,10 +172,33 @@ with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
|
|
| 156 |
# Parameters
|
| 157 |
with gr.Row():
|
| 158 |
with gr.Column():
|
| 159 |
-
iterations = gr.Slider(
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
with gr.Column():
|
| 165 |
run_btn = gr.Button("π Run Comparison", variant="primary", size="lg")
|
|
@@ -167,9 +206,19 @@ with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
|
|
| 167 |
# Output
|
| 168 |
with gr.Row():
|
| 169 |
with gr.Column(scale=1):
|
| 170 |
-
output_text = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
-
output_plot = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
# Run comparison
|
| 175 |
run_btn.click(
|
|
@@ -178,7 +227,19 @@ with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
|
|
| 178 |
outputs=[output_text, output_plot],
|
| 179 |
api_name="run_comparison"
|
| 180 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
if __name__ == "__main__":
|
| 183 |
-
#
|
| 184 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 7 |
import os
|
| 8 |
import subprocess
|
| 9 |
from pathlib import Path
|
| 10 |
+
import gradio as gr # Import directly, do not use the patch
|
| 11 |
|
| 12 |
# Add project paths
|
| 13 |
sys.path.insert(0, str(Path(__file__).parent))
|
|
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
# Set device environment variable for subprocess
|
| 23 |
+
# On Hugging Face Spaces with GPU, try to use CUDA
|
| 24 |
if device == "cuda":
|
| 25 |
try:
|
| 26 |
import torch
|
| 27 |
+
# Check if CUDA is available
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
try:
|
| 30 |
+
# Try to get device name to verify GPU works
|
| 31 |
gpu_name = torch.cuda.get_device_name(0)
|
| 32 |
gpu_count = torch.cuda.device_count()
|
| 33 |
print(f"β
GPU available: {gpu_name} (Count: {gpu_count})")
|
| 34 |
+
# Keep device as "cuda"
|
| 35 |
except Exception as e:
|
| 36 |
print(f"β οΈ GPU detection failed: {e}")
|
| 37 |
+
print(" Attempting to use CUDA anyway (may work)...")
|
| 38 |
else:
|
| 39 |
print("β οΈ CUDA not available, falling back to CPU")
|
| 40 |
device = "cpu"
|
|
|
|
| 45 |
print(f"β οΈ GPU check error: {e}, falling back to CPU")
|
| 46 |
device = "cpu"
|
| 47 |
|
| 48 |
+
# Set environment variable for subprocess to pick up
|
| 49 |
os.environ["CUDA_DEVICE"] = device
|
| 50 |
print(f"π§ Using device: {device}")
|
| 51 |
|
|
|
|
| 62 |
cmd.extend(["--seed", str(int(seed))])
|
| 63 |
|
| 64 |
try:
|
| 65 |
+
# Ensure environment variables are passed to subprocess
|
| 66 |
env = os.environ.copy()
|
| 67 |
env["CUDA_DEVICE"] = os.environ.get("CUDA_DEVICE", device)
|
| 68 |
|
| 69 |
result = subprocess.run(
|
| 70 |
cmd,
|
| 71 |
cwd=str(Path(__file__).parent),
|
| 72 |
+
env=env, # Pass environment variables
|
| 73 |
capture_output=True,
|
| 74 |
text=True,
|
| 75 |
timeout=3600 # 1 hour timeout
|
|
|
|
| 78 |
stdout_text = result.stdout
|
| 79 |
stderr_text = result.stderr
|
| 80 |
|
| 81 |
+
# Combine outputs
|
| 82 |
full_output = f"=== STDOUT ===\n{stdout_text}\n\n=== STDERR ===\n{stderr_text}"
|
| 83 |
|
| 84 |
if result.returncode != 0:
|
| 85 |
return f"β Error occurred:\n{full_output}", None
|
| 86 |
|
| 87 |
+
# Find output plot (check multiple possible locations)
|
| 88 |
plot_paths = [
|
| 89 |
Path(__file__).parent / "teacher_agent_dev" / "comparison_all_strategies.png",
|
| 90 |
Path(__file__).parent / "comparison_all_strategies.png",
|
|
|
|
| 100 |
if plot_path:
|
| 101 |
return f"β
Comparison complete!\n\n{stdout_text}", str(plot_path)
|
| 102 |
else:
|
| 103 |
+
# Return output even if plot not found (might still be useful)
|
| 104 |
error_msg = f"β οΈ Plot not found at expected locations.\n"
|
| 105 |
error_msg += f"Checked: {[str(p) for p in plot_paths]}\n\n"
|
| 106 |
error_msg += f"Output:\n{full_output}"
|
|
|
|
| 117 |
"""Check if GPU is available on Hugging Face Spaces."""
|
| 118 |
try:
|
| 119 |
import torch
|
| 120 |
+
|
| 121 |
+
# Check CUDA availability
|
| 122 |
if torch.cuda.is_available():
|
| 123 |
try:
|
| 124 |
gpu_name = torch.cuda.get_device_name(0)
|
|
|
|
| 126 |
cuda_version = torch.version.cuda
|
| 127 |
return f"β
GPU Available: {gpu_name} (Count: {gpu_count}, CUDA: {cuda_version})"
|
| 128 |
except Exception as e:
|
| 129 |
+
# GPU might be available but not immediately accessible
|
| 130 |
return f"β
GPU Detected (accessing: {str(e)[:50]}...)"
|
| 131 |
else:
|
| 132 |
+
# On Hugging Face Spaces, check environment
|
| 133 |
if os.getenv("SPACE_ID"):
|
| 134 |
+
# Check if GPU hardware is allocated
|
| 135 |
hf_hardware = os.getenv("SPACE_HARDWARE", "unknown")
|
| 136 |
if "gpu" in hf_hardware.lower() or "t4" in hf_hardware.lower() or "l4" in hf_hardware.lower():
|
| 137 |
return f"β οΈ GPU Hardware ({hf_hardware}) allocated but not accessible yet. Try running anyway."
|
|
|
|
| 154 |
3. **Teacher Strategy**: RL teacher agent learns optimal curriculum
|
| 155 |
|
| 156 |
## Usage
|
| 157 |
+
|
| 158 |
1. Set parameters below
|
| 159 |
2. Click "Run Comparison" to start training
|
| 160 |
3. View results and generated plots
|
| 161 |
+
|
| 162 |
+
**Note**: With LM Student, this will take 15-30 minutes for 500 iterations.
|
| 163 |
""")
|
| 164 |
|
| 165 |
# GPU Status
|
|
|
|
| 172 |
# Parameters
|
| 173 |
with gr.Row():
|
| 174 |
with gr.Column():
|
| 175 |
+
iterations = gr.Slider(
|
| 176 |
+
minimum=50,
|
| 177 |
+
maximum=500,
|
| 178 |
+
value=100,
|
| 179 |
+
step=50,
|
| 180 |
+
label="Iterations",
|
| 181 |
+
info="Number of training iterations (higher = longer runtime)"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
seed = gr.Number(
|
| 185 |
+
value=42,
|
| 186 |
+
label="Random Seed",
|
| 187 |
+
info="Seed for reproducibility (ignored if deterministic)"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
use_deterministic = gr.Checkbox(
|
| 191 |
+
value=True,
|
| 192 |
+
label="Deterministic Mode",
|
| 193 |
+
info="Use fixed seed=42 for reproducible results"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
device = gr.Radio(
|
| 197 |
+
choices=["cuda", "cpu"],
|
| 198 |
+
value="cuda", # Default to GPU for HF Spaces with Nvidia 4xL4
|
| 199 |
+
label="Device",
|
| 200 |
+
info="GPU (cuda) recommended for Nvidia 4xL4, CPU fallback available"
|
| 201 |
+
)
|
| 202 |
|
| 203 |
with gr.Column():
|
| 204 |
run_btn = gr.Button("π Run Comparison", variant="primary", size="lg")
|
|
|
|
| 206 |
# Output
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column(scale=1):
|
| 209 |
+
output_text = gr.Textbox(
|
| 210 |
+
label="Output",
|
| 211 |
+
lines=15,
|
| 212 |
+
max_lines=30,
|
| 213 |
+
interactive=False
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
with gr.Column(scale=1):
|
| 217 |
+
output_plot = gr.Image(
|
| 218 |
+
label="Comparison Plot",
|
| 219 |
+
type="filepath",
|
| 220 |
+
height=500
|
| 221 |
+
)
|
| 222 |
|
| 223 |
# Run comparison
|
| 224 |
run_btn.click(
|
|
|
|
| 227 |
outputs=[output_text, output_plot],
|
| 228 |
api_name="run_comparison"
|
| 229 |
)
|
| 230 |
+
|
| 231 |
+
gr.Markdown("""
|
| 232 |
+
## π Understanding Results
|
| 233 |
+
|
| 234 |
+
The comparison plot shows:
|
| 235 |
+
- **Learning Curves**: How each strategy improves over time
|
| 236 |
+
- **Difficult Question Performance**: Accuracy on hard questions
|
| 237 |
+
- **Curriculum Diversity**: Topic coverage over time
|
| 238 |
+
- **Learning Efficiency**: Iterations to reach target vs final performance
|
| 239 |
+
|
| 240 |
+
The **Teacher Strategy** should ideally outperform Random and Progressive strategies.
|
| 241 |
+
""")
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|
| 244 |
+
# Ensure the app binds to all interfaces for HF Spaces
|
| 245 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|