Spaces:
Sleeping
Sleeping
File size: 9,032 Bytes
b0e3fdc 3bbc486 5201bb7 3bbc486 b0e3fdc 3bbc486 50a690c 3bbc486 50a690c 3bbc486 50a690c 3bbc486 50a690c 3bbc486 50a690c 3bbc486 50a690c 3bbc486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import io
import requests
import onnxruntime as ort
import numpy as np
import os
from PIL import Image, ImageDraw, ImageFont
import matplotlib
import cv2
import tempfile
# ---------------------------
# Font helper
# ---------------------------
def get_font(size=20):
font_name = matplotlib.rcParams['font.sans-serif'][0]
font_path = matplotlib.font_manager.findfont(font_name)
return ImageFont.truetype(font_path, size)
# ---------------------------
# Colors and classes
# ---------------------------
COLOR_PALETTE = [
(220, 20, 60), # Crimson Red
(0, 128, 0), # Green
(0, 0, 255), # Blue
(255, 140, 0), # Dark Orange
(255, 215, 0), # Gold
(138, 43, 226), # Blue Violet
(0, 206, 209), # Dark Turquoise
(255, 105, 180), # Hot Pink
(70, 130, 180), # Steel Blue
(46, 139, 87), # Sea Green
(210, 105, 30), # Chocolate
(123, 104, 238), # Medium Slate Blue
(199, 21, 133), # Medium Violet Red
]
classes = [
'None','Boots','C-worker','Cone','Construction-hat','Crane',
'Excavator','Gloves','Goggles','Ladder','Mask','Truck','Vest'
]
CLASS_COLORS = {cls: COLOR_PALETTE[i % len(COLOR_PALETTE)] for i, cls in enumerate(classes)}
# ---------------------------
# Image loading
# ---------------------------
def open_image(path):
"""Load image from local path or URL."""
if path.startswith('http://') or path.startswith('https://'):
img = Image.open(io.BytesIO(requests.get(path).content))
else:
if os.path.exists(path):
img = Image.open(path)
else:
raise FileNotFoundError(f"The file {path} does not exist.")
return img
# ---------------------------
# Utilities
# ---------------------------
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def box_cxcywh_to_xyxy_numpy(x):
"""Convert [cx, cy, w, h] box format to [x1, y1, x2, y2]."""
x_c, y_c, w, h = np.split(x, 4, axis=-1)
b = np.concatenate([
x_c - 0.5 * np.clip(w, a_min=0.0, a_max=None),
y_c - 0.5 * np.clip(h, a_min=0.0, a_max=None),
x_c + 0.5 * np.clip(w, a_min=0.0, a_max=None),
y_c + 0.5 * np.clip(h, a_min=0.0, a_max=None)
], axis=-1)
return b
# ---------------------------
# RTDETR ONNX Inference
# ---------------------------
class RTDETR_ONNX:
MEANS = [0.485, 0.456, 0.406]
STDS = [0.229, 0.224, 0.225]
def __init__(self, onnx_model_path):
self.ort_session = ort.InferenceSession(onnx_model_path)
input_info = self.ort_session.get_inputs()[0]
self.input_height, self.input_width = input_info.shape[2:]
def _preprocess_image(self, image):
"""Preprocess the input image for inference."""
image = image.resize((self.input_width, self.input_height))
image = np.array(image).astype(np.float32) / 255.0
image = ((image - self.MEANS) / self.STDS).astype(np.float32)
image = np.transpose(image, (2, 0, 1)) # HWC → CHW
image = np.expand_dims(image, axis=0) # Add batch
return image
def _post_process(self, outputs, origin_height, origin_width, confidence_threshold, max_number_boxes):
"""Post-process raw outputs into scores, labels, and boxes."""
pred_boxes, pred_logits = outputs
prob = sigmoid(pred_logits)
# Flatten and get top-k
flat_prob = prob[0].flatten()
topk_indexes = np.argsort(flat_prob)[-max_number_boxes:][::-1]
topk_values = np.take_along_axis(flat_prob, topk_indexes, axis=0)
scores = topk_values
topk_boxes = topk_indexes // pred_logits.shape[2]
labels = topk_indexes % pred_logits.shape[2]
# Gather boxes
boxes = box_cxcywh_to_xyxy_numpy(pred_boxes[0])
boxes = np.take_along_axis(
boxes,
np.expand_dims(topk_boxes, axis=-1).repeat(4, axis=-1),
axis=0
)
# Rescale boxes
target_sizes = np.array([[origin_height, origin_width]])
img_h, img_w = target_sizes[:, 0], target_sizes[:, 1]
scale_fct = np.stack([img_w, img_h, img_w, img_h], axis=1)
boxes = boxes * scale_fct[0, :]
# Filter by confidence
keep = scores > confidence_threshold
scores = scores[keep]
labels = labels[keep]
boxes = boxes[keep]
return scores, labels, boxes
def annotate_detections(self, image, boxes, labels, scores=None):
"""Draw bounding boxes and class labels, return PIL.Image."""
draw = ImageDraw.Draw(image)
font = get_font()
for i, box in enumerate(boxes.astype(int)):
cls_id = labels[i]
cls_name = classes[cls_id] if cls_id < len(classes) else str(cls_id)
color = CLASS_COLORS.get(cls_name, (0, 255, 0))
# Draw bounding box
draw.rectangle(box.tolist(), outline=color, width=3)
# Label text
label = f"{cls_name}"
if scores is not None:
label += f" {scores[i]:.2f}"
# Get text size
tw, th = draw.textbbox((0, 0), label, font=font)[2:]
tx, ty = box[0], max(0, box[1] - th - 4)
# Background rectangle
padding = 4
draw.rectangle([tx, ty, tx + tw + 2*padding, ty + th + 2*padding], fill=color)
# Put text
draw.text((tx + 2, ty + 2), label, fill="white", font=font)
return image
def run_inference(self, image, confidence_threshold=0.2, max_number_boxes=100):
"""Run inference and return annotated PIL image.
Accepts PIL.Image directly.
"""
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL.Image")
origin_width, origin_height = image.size
# Preprocess
input_image = self._preprocess_image(image)
# Run model
input_name = self.ort_session.get_inputs()[0].name
outputs = self.ort_session.run(None, {input_name: input_image})
# Post-process
scores, labels, boxes = self._post_process(
outputs, origin_height, origin_width,
confidence_threshold, max_number_boxes
)
# Annotate and return
return self.annotate_detections(image.copy(), boxes, labels, scores)
def process_video_to_file(self, video_path, max_duration=5, target_fps=5, max_height=640, confidence_threshold=0.25):
"""
Process video, run inference with confidence threshold, annotate frames,
and return a temporary MP4 video file path.
"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise FileNotFoundError(f"Cannot open video: {video_path}")
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(min(cap.get(cv2.CAP_PROP_FRAME_COUNT), max_duration * original_fps))
skip_every = max(int(original_fps // target_fps), 1)
# Read first frame to get resized frame size
ret, frame = cap.read()
if not ret:
raise ValueError("Cannot read the first frame of the video")
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(frame_rgb)
if pil_img.height > max_height:
aspect_ratio = pil_img.width / pil_img.height
new_height = max_height
new_width = int(aspect_ratio * new_height)
pil_img = pil_img.resize((new_width, new_height))
frame_size = (pil_img.width, pil_img.height)
# Create temporary file for output video
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_file.name, fourcc, target_fps, frame_size)
# Reset capture to first frame
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frame_idx = 0
while frame_idx < frame_count:
ret, frame = cap.read()
if not ret:
break
if frame_idx % skip_every == 0:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(frame_rgb)
if pil_img.height > max_height:
aspect_ratio = pil_img.width / pil_img.height
new_height = max_height
new_width = int(aspect_ratio * new_height)
pil_img = pil_img.resize((new_width, new_height))
# Run inference with confidence threshold
annotated_pil = self.run_inference(pil_img, confidence_threshold=confidence_threshold)
# Convert back to BGR for OpenCV
annotated_bgr = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
out.write(annotated_bgr)
frame_idx += 1
cap.release()
out.release()
return temp_file.name # path to temporary annotated video
|