Spaces:
Sleeping
Sleeping
Create image_inference.py
Browse files- image_inference.py +189 -0
image_inference.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import io
|
| 4 |
+
import requests
|
| 5 |
+
import onnxruntime as ort
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
import matplotlib
|
| 10 |
+
|
| 11 |
+
# ---------------------------
|
| 12 |
+
# Font helper
|
| 13 |
+
# ---------------------------
|
| 14 |
+
def get_font(size=20):
|
| 15 |
+
font_name = matplotlib.rcParams['font.sans-serif'][0]
|
| 16 |
+
font_path = matplotlib.font_manager.findfont(font_name)
|
| 17 |
+
return ImageFont.truetype(font_path, size)
|
| 18 |
+
|
| 19 |
+
# ---------------------------
|
| 20 |
+
# Colors and classes
|
| 21 |
+
# ---------------------------
|
| 22 |
+
COLOR_PALETTE = [
|
| 23 |
+
(220, 20, 60), # Crimson Red
|
| 24 |
+
(0, 128, 0), # Green
|
| 25 |
+
(0, 0, 255), # Blue
|
| 26 |
+
(255, 140, 0), # Dark Orange
|
| 27 |
+
(255, 215, 0), # Gold
|
| 28 |
+
(138, 43, 226), # Blue Violet
|
| 29 |
+
(0, 206, 209), # Dark Turquoise
|
| 30 |
+
(255, 105, 180), # Hot Pink
|
| 31 |
+
(70, 130, 180), # Steel Blue
|
| 32 |
+
(46, 139, 87), # Sea Green
|
| 33 |
+
(210, 105, 30), # Chocolate
|
| 34 |
+
(123, 104, 238), # Medium Slate Blue
|
| 35 |
+
(199, 21, 133), # Medium Violet Red
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
classes = [
|
| 39 |
+
'None','Boots','C-worker','Cone','Construction-hat','Crane',
|
| 40 |
+
'Excavator','Gloves','Goggles','Ladder','Mask','Truck','Vest'
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
CLASS_COLORS = {cls: COLOR_PALETTE[i % len(COLOR_PALETTE)] for i, cls in enumerate(classes)}
|
| 44 |
+
|
| 45 |
+
# ---------------------------
|
| 46 |
+
# Image loading
|
| 47 |
+
# ---------------------------
|
| 48 |
+
def open_image(path):
|
| 49 |
+
"""Load image from local path or URL."""
|
| 50 |
+
if path.startswith('http://') or path.startswith('https://'):
|
| 51 |
+
img = Image.open(io.BytesIO(requests.get(path).content))
|
| 52 |
+
else:
|
| 53 |
+
if os.path.exists(path):
|
| 54 |
+
img = Image.open(path)
|
| 55 |
+
else:
|
| 56 |
+
raise FileNotFoundError(f"The file {path} does not exist.")
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
# ---------------------------
|
| 60 |
+
# Utilities
|
| 61 |
+
# ---------------------------
|
| 62 |
+
def sigmoid(x):
|
| 63 |
+
return 1 / (1 + np.exp(-x))
|
| 64 |
+
|
| 65 |
+
def box_cxcywh_to_xyxy_numpy(x):
|
| 66 |
+
"""Convert [cx, cy, w, h] box format to [x1, y1, x2, y2]."""
|
| 67 |
+
x_c, y_c, w, h = np.split(x, 4, axis=-1)
|
| 68 |
+
b = np.concatenate([
|
| 69 |
+
x_c - 0.5 * np.clip(w, a_min=0.0, a_max=None),
|
| 70 |
+
y_c - 0.5 * np.clip(h, a_min=0.0, a_max=None),
|
| 71 |
+
x_c + 0.5 * np.clip(w, a_min=0.0, a_max=None),
|
| 72 |
+
y_c + 0.5 * np.clip(h, a_min=0.0, a_max=None)
|
| 73 |
+
], axis=-1)
|
| 74 |
+
return b
|
| 75 |
+
|
| 76 |
+
# ---------------------------
|
| 77 |
+
# RTDETR ONNX Inference
|
| 78 |
+
# ---------------------------
|
| 79 |
+
class RTDETR_ONNX:
|
| 80 |
+
MEANS = [0.485, 0.456, 0.406]
|
| 81 |
+
STDS = [0.229, 0.224, 0.225]
|
| 82 |
+
|
| 83 |
+
def __init__(self, onnx_model_path):
|
| 84 |
+
self.ort_session = ort.InferenceSession(onnx_model_path)
|
| 85 |
+
input_info = self.ort_session.get_inputs()[0]
|
| 86 |
+
self.input_height, self.input_width = input_info.shape[2:]
|
| 87 |
+
|
| 88 |
+
def _preprocess_image(self, image):
|
| 89 |
+
"""Preprocess the input image for inference."""
|
| 90 |
+
|
| 91 |
+
image = image.resize((self.input_width, self.input_height))
|
| 92 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 93 |
+
image = ((image - self.MEANS) / self.STDS).astype(np.float32)
|
| 94 |
+
image = np.transpose(image, (2, 0, 1)) # HWC → CHW
|
| 95 |
+
image = np.expand_dims(image, axis=0) # Add batch
|
| 96 |
+
return image
|
| 97 |
+
|
| 98 |
+
def _post_process(self, outputs, origin_height, origin_width, confidence_threshold, max_number_boxes):
|
| 99 |
+
"""Post-process raw outputs into scores, labels, and boxes."""
|
| 100 |
+
pred_boxes, pred_logits = outputs
|
| 101 |
+
prob = sigmoid(pred_logits)
|
| 102 |
+
|
| 103 |
+
# Flatten and get top-k
|
| 104 |
+
flat_prob = prob[0].flatten()
|
| 105 |
+
topk_indexes = np.argsort(flat_prob)[-max_number_boxes:][::-1]
|
| 106 |
+
topk_values = np.take_along_axis(flat_prob, topk_indexes, axis=0)
|
| 107 |
+
scores = topk_values
|
| 108 |
+
topk_boxes = topk_indexes // pred_logits.shape[2]
|
| 109 |
+
labels = topk_indexes % pred_logits.shape[2]
|
| 110 |
+
|
| 111 |
+
# Gather boxes
|
| 112 |
+
boxes = box_cxcywh_to_xyxy_numpy(pred_boxes[0])
|
| 113 |
+
boxes = np.take_along_axis(
|
| 114 |
+
boxes,
|
| 115 |
+
np.expand_dims(topk_boxes, axis=-1).repeat(4, axis=-1),
|
| 116 |
+
axis=0
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Rescale boxes
|
| 120 |
+
target_sizes = np.array([[origin_height, origin_width]])
|
| 121 |
+
img_h, img_w = target_sizes[:, 0], target_sizes[:, 1]
|
| 122 |
+
scale_fct = np.stack([img_w, img_h, img_w, img_h], axis=1)
|
| 123 |
+
boxes = boxes * scale_fct[0, :]
|
| 124 |
+
|
| 125 |
+
# Filter by confidence
|
| 126 |
+
keep = scores > confidence_threshold
|
| 127 |
+
scores = scores[keep]
|
| 128 |
+
labels = labels[keep]
|
| 129 |
+
boxes = boxes[keep]
|
| 130 |
+
|
| 131 |
+
return scores, labels, boxes
|
| 132 |
+
|
| 133 |
+
def annotate_detections(self, image, boxes, labels, scores=None):
|
| 134 |
+
"""Draw bounding boxes and class labels, return PIL.Image."""
|
| 135 |
+
draw = ImageDraw.Draw(image)
|
| 136 |
+
font = get_font()
|
| 137 |
+
|
| 138 |
+
for i, box in enumerate(boxes.astype(int)):
|
| 139 |
+
cls_id = labels[i]
|
| 140 |
+
cls_name = classes[cls_id] if cls_id < len(classes) else str(cls_id)
|
| 141 |
+
color = CLASS_COLORS.get(cls_name, (0, 255, 0))
|
| 142 |
+
|
| 143 |
+
# Draw bounding box
|
| 144 |
+
draw.rectangle(box.tolist(), outline=color, width=3)
|
| 145 |
+
|
| 146 |
+
# Label text
|
| 147 |
+
label = f"{cls_name}"
|
| 148 |
+
if scores is not None:
|
| 149 |
+
label += f" {scores[i]:.2f}"
|
| 150 |
+
|
| 151 |
+
# Get text size
|
| 152 |
+
tw, th = draw.textbbox((0, 0), label, font=font)[2:]
|
| 153 |
+
tx, ty = box[0], max(0, box[1] - th - 4)
|
| 154 |
+
|
| 155 |
+
# Background rectangle
|
| 156 |
+
padding = 4
|
| 157 |
+
draw.rectangle([tx, ty, tx + tw + 2*padding, ty + th + 2*padding], fill=color)
|
| 158 |
+
|
| 159 |
+
# Put text
|
| 160 |
+
draw.text((tx + 2, ty + 2), label, fill="white", font=font)
|
| 161 |
+
|
| 162 |
+
return image
|
| 163 |
+
|
| 164 |
+
def run_inference(self, image, confidence_threshold=0.2, max_number_boxes=100):
|
| 165 |
+
"""Run inference and return annotated PIL image.
|
| 166 |
+
Accepts PIL.Image directly.
|
| 167 |
+
"""
|
| 168 |
+
if not isinstance(image, Image.Image):
|
| 169 |
+
raise ValueError("Input must be a PIL.Image")
|
| 170 |
+
|
| 171 |
+
origin_width, origin_height = image.size
|
| 172 |
+
|
| 173 |
+
# Preprocess
|
| 174 |
+
input_image = self._preprocess_image(image)
|
| 175 |
+
|
| 176 |
+
# Run model
|
| 177 |
+
input_name = self.ort_session.get_inputs()[0].name
|
| 178 |
+
outputs = self.ort_session.run(None, {input_name: input_image})
|
| 179 |
+
|
| 180 |
+
# Post-process
|
| 181 |
+
scores, labels, boxes = self._post_process(
|
| 182 |
+
outputs, origin_height, origin_width,
|
| 183 |
+
confidence_threshold, max_number_boxes
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Annotate and return
|
| 187 |
+
return self.annotate_detections(image.copy(), boxes, labels, scores)
|
| 188 |
+
|
| 189 |
+
|