A newer version of the Gradio SDK is available:
6.1.0
Triton Inference Serving Best Practice for F5-TTS
Setup
Option 1: Quick Start
# Directly launch the service using docker compose
MODEL=F5TTS_v1_Base docker compose up
Option 2: Build from scratch
# Build the docker image
docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12
# Create Docker Container
your_mount_dir=/mnt:/mnt
docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12
Build TensorRT-LLM Engines and Launch Server
Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See here.
# F5TTS_v1_Base | F5TTS_Base | F5TTS_v1_Small | F5TTS_Small
bash run.sh 0 4 F5TTS_v1_Base
If use custom checkpoint, set
ckpt_fileandvocab_fileinrun.sh.
Remember to used matched model version (F5TTS_v1_*for v1,F5TTS_*for v0).If use checkpoint of different structure, see
scripts/convert_checkpoint.py, and perform modification if necessary.
If train or finetune with fp32, add
--dtype float32flag when converting checkpoint inrun.shphase 1.
HTTP Client
python3 client_http.py
Benchmarking
Using Client-Server Mode
# bash run.sh 5 5 F5TTS_v1_Base
num_task=2
python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts
Using Offline TRT-LLM Mode
# bash run.sh 7 7 F5TTS_v1_Base
batch_size=1
split_name=wenetspeech4tts
backend_type=trt
log_dir=./tests/benchmark_batch_size_${batch_size}_${split_name}_${backend_type}
rm -r $log_dir
torchrun --nproc_per_node=1 \
benchmark.py --output-dir $log_dir \
--batch-size $batch_size \
--enable-warmup \
--split-name $split_name \
--model-path $ckpt_file \
--vocab-file $vocab_file \
--vocoder-trt-engine-path $VOCODER_TRT_ENGINE_PATH \
--backend-type $backend_type \
--tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1
Benchmark Results
Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE.
| Model | Concurrency | Avg Latency | RTF | Mode |
|---|---|---|---|---|
| F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch |