dongxiat's picture
Upload folder using huggingface_hub
6dd0e28 verified
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
import torchvision.transforms as T
import os
import random
class TextErasingDemo:
def __init__(self):
# Initialize model components (placeholder for actual model loading)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def erase_text(self, image, method="self_supervised", strength=0.7):
"""
Main function to erase text from images.
This is a simplified implementation that simulates text erasing.
"""
try:
# Convert PIL to numpy for processing
if isinstance(image, Image.Image):
img_np = np.array(image)
else:
img_np = image.copy()
# Get image dimensions
h, w = img_np.shape[:2]
# Simulate text detection and erasing
# In a real implementation, this would use the actual model
if method == "self_supervised":
# Create a mask for text regions (simulated)
mask = np.zeros((h, w), dtype=np.uint8)
# Randomly generate some rectangular regions as "text"
num_regions = random.randint(3, 8)
for _ in range(num_regions):
# Random text region
x1 = random.randint(0, w-50)
y1 = random.randint(0, h-20)
x2 = x1 + random.randint(30, 100)
y2 = y1 + random.randint(15, 30)
# Apply Gaussian blur to simulate text removal
region = img_np[y1:y2, x1:x2]
if region.size > 0:
# Apply inpainting or blurring
kernel_size = int(5 * strength) + 1
kernel_size = kernel_size if kernel_size % 2 == 1 else kernel_size + 1
blurred_region = cv2.GaussianBlur(region, (kernel_size, kernel_size), 0)
# Blend the blurred region back
alpha = 0.8 * strength
img_np[y1:y2, x1:x2] = cv2.addWeighted(
region, 1-alpha, blurred_region, alpha, 0
)
# Create a more realistic mask with text-like shapes
for i in range(h)):
for j in range(w)):
# Simple pattern to simulate text
if (i // 20 + j // 20) % 2 == 0:
mask[i,j] = 255
# Apply inpainting using the mask
result = cv2.inpaint(img_np, mask, 3, cv2.INPAINT_TELEA)
else:
# For other methods, use a different approach
# Apply median filtering for text removal
result = cv2.medianBlur(img_np, int(5 * strength) + 1)
# Ensure we have a valid image
if result is None or result.size == 0:
result = img_np
return result
except Exception as e:
print(f"Error in text erasing: {e}")
return image
def main():
demo = TextErasingDemo()
def process_image(input_image, method, strength):
"""
Process the image with text erasing
"""
try:
result = demo.erase_text(input_image, method, strength)
return result
except Exception as e:
raise gr.Error(f"Failed to process image: {str(e)}")
with gr.Blocks(
title="Self-supervised Text Erasing",
footer_links=[{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"]
) as app:
gr.Markdown("# 🎨 Self-supervised Text Erasing")
gr.Markdown("Upload an image containing text and see it get erased!")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="pil",
sources=["upload", "webcam"],
interactive=True
)
with gr.Column():
method_selector = gr.Dropdown(
choices=["self_supervised", "traditional", "neural_network"],
label="Erasing Method",
value="self_supervised"
)
strength_slider = gr.Slider(
label="Erasing Strength",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1
)
with gr.Column():
output_image = gr.Image(
label="Output Image (Text Erased)")
)
process_btn = gr.Button("Erase Text �", variant="primary")
# Example images
example_images = [
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example1.jpg"],
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example2.jpg"],
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example3.jpg"]
]
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_image,
cache_examples=True
)
# Event listener with Gradio 6 syntax
process_btn.click(
fn=process_image,
inputs=[input_image, method_selector, strength_slider],
outputs=output_image,
api_visibility="public"
)
# Additional information
with gr.Accordion("About this Demo"):
gr.Markdown("""
## Self-supervised Text Erasing
This demo showcases text erasing capabilities using self-supervised learning approaches.
**Features:**
- Multiple text erasing methods
- Adjustable erasing strength
- Real-time processing
**How to use:**
1. Upload an image with text or use your webcam
2. Select the erasing method
3. Adjust the erasing strength
4. Click 'Erase Text' to process the image
**Note:** This is a simulation of the actual text erasing process.
""")
app.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)
if __name__ == "__main__":
main()