Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as T
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
class TextErasingDemo:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
# Initialize model components (placeholder for actual model loading)
|
| 13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
def erase_text(self, image, method="self_supervised", strength=0.7):
|
| 16 |
+
"""
|
| 17 |
+
Main function to erase text from images.
|
| 18 |
+
This is a simplified implementation that simulates text erasing.
|
| 19 |
+
"""
|
| 20 |
+
try:
|
| 21 |
+
# Convert PIL to numpy for processing
|
| 22 |
+
if isinstance(image, Image.Image):
|
| 23 |
+
img_np = np.array(image)
|
| 24 |
+
else:
|
| 25 |
+
img_np = image.copy()
|
| 26 |
+
|
| 27 |
+
# Get image dimensions
|
| 28 |
+
h, w = img_np.shape[:2]
|
| 29 |
+
|
| 30 |
+
# Simulate text detection and erasing
|
| 31 |
+
# In a real implementation, this would use the actual model
|
| 32 |
+
if method == "self_supervised":
|
| 33 |
+
# Create a mask for text regions (simulated)
|
| 34 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
| 35 |
+
|
| 36 |
+
# Randomly generate some rectangular regions as "text"
|
| 37 |
+
num_regions = random.randint(3, 8)
|
| 38 |
+
for _ in range(num_regions):
|
| 39 |
+
# Random text region
|
| 40 |
+
x1 = random.randint(0, w-50)
|
| 41 |
+
y1 = random.randint(0, h-20)
|
| 42 |
+
x2 = x1 + random.randint(30, 100)
|
| 43 |
+
y2 = y1 + random.randint(15, 30)
|
| 44 |
+
|
| 45 |
+
# Apply Gaussian blur to simulate text removal
|
| 46 |
+
region = img_np[y1:y2, x1:x2]
|
| 47 |
+
if region.size > 0:
|
| 48 |
+
# Apply inpainting or blurring
|
| 49 |
+
kernel_size = int(5 * strength) + 1
|
| 50 |
+
kernel_size = kernel_size if kernel_size % 2 == 1 else kernel_size + 1
|
| 51 |
+
blurred_region = cv2.GaussianBlur(region, (kernel_size, kernel_size), 0)
|
| 52 |
+
|
| 53 |
+
# Blend the blurred region back
|
| 54 |
+
alpha = 0.8 * strength
|
| 55 |
+
img_np[y1:y2, x1:x2] = cv2.addWeighted(
|
| 56 |
+
region, 1-alpha, blurred_region, alpha, 0
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Create a more realistic mask with text-like shapes
|
| 60 |
+
for i in range(h)):
|
| 61 |
+
for j in range(w)):
|
| 62 |
+
# Simple pattern to simulate text
|
| 63 |
+
if (i // 20 + j // 20) % 2 == 0:
|
| 64 |
+
mask[i,j] = 255
|
| 65 |
+
|
| 66 |
+
# Apply inpainting using the mask
|
| 67 |
+
result = cv2.inpaint(img_np, mask, 3, cv2.INPAINT_TELEA)
|
| 68 |
+
else:
|
| 69 |
+
# For other methods, use a different approach
|
| 70 |
+
# Apply median filtering for text removal
|
| 71 |
+
result = cv2.medianBlur(img_np, int(5 * strength) + 1)
|
| 72 |
+
|
| 73 |
+
# Ensure we have a valid image
|
| 74 |
+
if result is None or result.size == 0:
|
| 75 |
+
result = img_np
|
| 76 |
+
|
| 77 |
+
return result
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Error in text erasing: {e}")
|
| 81 |
+
return image
|
| 82 |
+
|
| 83 |
+
def main():
|
| 84 |
+
demo = TextErasingDemo()
|
| 85 |
+
|
| 86 |
+
def process_image(input_image, method, strength):
|
| 87 |
+
"""
|
| 88 |
+
Process the image with text erasing
|
| 89 |
+
"""
|
| 90 |
+
try:
|
| 91 |
+
result = demo.erase_text(input_image, method, strength)
|
| 92 |
+
return result
|
| 93 |
+
except Exception as e:
|
| 94 |
+
raise gr.Error(f"Failed to process image: {str(e)}")
|
| 95 |
+
|
| 96 |
+
with gr.Blocks(
|
| 97 |
+
title="Self-supervised Text Erasing",
|
| 98 |
+
footer_links=[{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"]
|
| 99 |
+
) as app:
|
| 100 |
+
gr.Markdown("# 🎨 Self-supervised Text Erasing")
|
| 101 |
+
gr.Markdown("Upload an image containing text and see it get erased!")
|
| 102 |
+
|
| 103 |
+
with gr.Row():
|
| 104 |
+
with gr.Column():
|
| 105 |
+
input_image = gr.Image(
|
| 106 |
+
label="Input Image",
|
| 107 |
+
type="pil",
|
| 108 |
+
sources=["upload", "webcam"],
|
| 109 |
+
interactive=True
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
with gr.Column():
|
| 113 |
+
method_selector = gr.Dropdown(
|
| 114 |
+
choices=["self_supervised", "traditional", "neural_network"],
|
| 115 |
+
label="Erasing Method",
|
| 116 |
+
value="self_supervised"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
strength_slider = gr.Slider(
|
| 120 |
+
label="Erasing Strength",
|
| 121 |
+
minimum=0.1,
|
| 122 |
+
maximum=1.0,
|
| 123 |
+
value=0.7,
|
| 124 |
+
step=0.1
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Column():
|
| 128 |
+
output_image = gr.Image(
|
| 129 |
+
label="Output Image (Text Erased)")
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
process_btn = gr.Button("Erase Text �", variant="primary")
|
| 133 |
+
|
| 134 |
+
# Example images
|
| 135 |
+
example_images = [
|
| 136 |
+
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example1.jpg"],
|
| 137 |
+
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example2.jpg"],
|
| 138 |
+
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example3.jpg"]
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
gr.Examples(
|
| 142 |
+
examples=example_images,
|
| 143 |
+
inputs=input_image,
|
| 144 |
+
outputs=output_image,
|
| 145 |
+
fn=process_image,
|
| 146 |
+
cache_examples=True
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Event listener with Gradio 6 syntax
|
| 150 |
+
process_btn.click(
|
| 151 |
+
fn=process_image,
|
| 152 |
+
inputs=[input_image, method_selector, strength_slider],
|
| 153 |
+
outputs=output_image,
|
| 154 |
+
api_visibility="public"
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Additional information
|
| 158 |
+
with gr.Accordion("About this Demo"):
|
| 159 |
+
gr.Markdown("""
|
| 160 |
+
## Self-supervised Text Erasing
|
| 161 |
+
|
| 162 |
+
This demo showcases text erasing capabilities using self-supervised learning approaches.
|
| 163 |
+
|
| 164 |
+
**Features:**
|
| 165 |
+
- Multiple text erasing methods
|
| 166 |
+
- Adjustable erasing strength
|
| 167 |
+
- Real-time processing
|
| 168 |
+
|
| 169 |
+
**How to use:**
|
| 170 |
+
1. Upload an image with text or use your webcam
|
| 171 |
+
2. Select the erasing method
|
| 172 |
+
3. Adjust the erasing strength
|
| 173 |
+
4. Click 'Erase Text' to process the image
|
| 174 |
+
|
| 175 |
+
**Note:** This is a simulation of the actual text erasing process.
|
| 176 |
+
""")
|
| 177 |
+
|
| 178 |
+
app.launch(
|
| 179 |
+
share=False,
|
| 180 |
+
server_name="0.0.0.0",
|
| 181 |
+
server_port=7860
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
main()
|
models.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class MockTextErasingModel(nn.Module):
|
| 5 |
+
"""Mock model for text erasing demonstration"""
|
| 6 |
+
|
| 7 |
+
def __init__(self):
|
| 8 |
+
super().__init__()
|
| 9 |
+
# Simple convolutional layers for demonstration
|
| 10 |
+
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
|
| 11 |
+
self.conv2 = nn.Conv2d(64, 3, 3, padding=1)
|
| 12 |
+
|
| 13 |
+
def forward(self, x):
|
| 14 |
+
return x
|
| 15 |
+
|
| 16 |
+
def load_model():
|
| 17 |
+
"""Load or create a mock text erasing model"""
|
| 18 |
+
return MockTextErasingModel()
|
| 19 |
+
|
| 20 |
+
This Gradio 6 application provides:
|
| 21 |
+
|
| 22 |
+
1. **Modern Gradio 6 Interface** with proper footer_links
|
| 23 |
+
2. **Multiple Input Methods**: Upload or webcam
|
| 24 |
+
3. **Configurable Parameters**: Method selection and strength adjustment
|
| 25 |
+
4. **Example Images** for quick testing
|
| 26 |
+
5. **Error handling** with user-friendly messages
|
| 27 |
+
6. **Interactive components** with clear labels and descriptions
|
| 28 |
+
7. **Accordion section** with detailed information
|
| 29 |
+
8. **Built with anycoder** attribution as required
|
| 30 |
+
|
| 31 |
+
The application simulates the text erasing process and can be extended with actual model implementations from the repository.
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
torchaudio
|
| 5 |
+
gradio
|
| 6 |
+
opencv-python
|
| 7 |
+
Pillow
|
| 8 |
+
requests
|
| 9 |
+
scipy
|
| 10 |
+
matplotlib
|
| 11 |
+
scikit-learn
|
| 12 |
+
pandas
|
| 13 |
+
tqdm
|
| 14 |
+
scikit-image
|
| 15 |
+
accelerate
|
utils.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
def preprocess_image(image):
|
| 6 |
+
"""Preprocess image for text erasing"""
|
| 7 |
+
# Convert to RGB if needed
|
| 8 |
+
if image.mode != "RGB":
|
| 9 |
+
image = image.convert("RGB")
|
| 10 |
+
return image
|
| 11 |
+
|
| 12 |
+
def create_text_mask(image_size, num_regions=5):
|
| 13 |
+
"""Create a simulated text mask for demonstration"""
|
| 14 |
+
mask = np.zeros(image_size, dtype=np.uint8)
|
| 15 |
+
|
| 16 |
+
for _ in range(num_regions):
|
| 17 |
+
# Random position for text-like region
|
| 18 |
+
x = np.random.randint(0, image_size[1] - 100)
|
| 19 |
+
y = np.random.randint(0, image_size[0] - 30)
|
| 20 |
+
width = np.random.randint(50, 200)
|
| 21 |
+
height = np.random.randint(20, 40)
|
| 22 |
+
|
| 23 |
+
# Draw rectangle (simulating text)
|
| 24 |
+
cv2.rectangle(mask, (x, y), (x + width, y + height), 255, -1)
|
| 25 |
+
|
| 26 |
+
return mask
|