Spaces:
Runtime error
Runtime error
| # Modified from https://github.com/JingyunLiang/SwinIR | |
| # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 | |
| # Originally Written by Ze Liu, Modified by Jingyun Liang. | |
| import collections.abc | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as checkpoint | |
| from itertools import repeat | |
| # from self_attention_cv import AxialAttentionBlock | |
| from functools import reduce, lru_cache | |
| from operator import mul | |
| from einops import rearrange | |
| import sys | |
| def make_layer(basic_block, num_basic_block, **kwarg): | |
| """Make layers by stacking the same blocks. | |
| Args: | |
| basic_block (nn.module): nn.module class for basic block. | |
| num_basic_block (int): number of blocks. | |
| Returns: | |
| nn.Sequential: Stacked blocks in nn.Sequential. | |
| """ | |
| layers = [] | |
| for _ in range(num_basic_block): | |
| layers.append(basic_block(**kwarg)) | |
| return nn.Sequential(*layers) | |
| class Upsample(nn.Sequential): | |
| """Upsample module. | |
| Args: | |
| scale (int): Scale factor. Supported scales: 2^n and 3. | |
| num_feat (int): Channel number of intermediate features. | |
| """ | |
| def __init__(self, scale, num_feat): | |
| m = [] | |
| if (scale & (scale - 1)) == 0: # scale = 2^n | |
| for _ in range(int(math.log(scale, 2))): | |
| m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(2)) | |
| elif scale == 3: | |
| m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(3)) | |
| else: | |
| raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
| super(Upsample, self).__init__(*m) | |
| # From PyTorch | |
| def _ntuple(n): | |
| def parse(x): | |
| if isinstance(x, collections.abc.Iterable): | |
| return x | |
| return tuple(repeat(x, n)) | |
| return parse | |
| to_2tuple = _ntuple(2) | |
| def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
| # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py | |
| # Cut & paste from PyTorch official master until it's in a few official releases - RW | |
| # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn( | |
| 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' | |
| 'The distribution of values may be incorrect.', | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| low = norm_cdf((a - mean) / std) | |
| up = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [low, up], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * low - 1, 2 * up - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
| r"""Fills the input Tensor with values drawn from a truncated | |
| normal distribution. | |
| From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py | |
| The values are effectively drawn from the | |
| normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
| with values outside :math:`[a, b]` redrawn until they are within | |
| the bounds. The method used for generating the random values works | |
| best when :math:`a \leq \text{mean} \leq b`. | |
| Args: | |
| tensor: an n-dimensional `torch.Tensor` | |
| mean: the mean of the normal distribution | |
| std: the standard deviation of the normal distribution | |
| a: the minimum cutoff value | |
| b: the maximum cutoff value | |
| Examples: | |
| >>> w = torch.empty(3, 5) | |
| >>> nn.init.trunc_normal_(w) | |
| """ | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
| class ChannelAttention(nn.Module): | |
| """Channel attention used in RCAN. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| """ | |
| def __init__(self, num_feat, squeeze_factor=16): | |
| super(ChannelAttention, self).__init__() | |
| self.attention = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), | |
| nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid()) | |
| def forward(self, x): | |
| y = self.attention(x) | |
| return x * y | |
| class RCAB(nn.Module): | |
| """Residual Channel Attention Block (RCAB) used in RCAN. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| res_scale (float): Scale the residual. Default: 1. | |
| """ | |
| def __init__(self, num_feat, squeeze_factor=16, res_scale=1): | |
| super(RCAB, self).__init__() | |
| self.res_scale = res_scale | |
| self.rcab = nn.Sequential( | |
| nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1), | |
| ChannelAttention(num_feat, squeeze_factor)) | |
| def forward(self, x): | |
| res = self.rcab(x) * self.res_scale | |
| return res + x | |
| class ResidualGroup(nn.Module): | |
| """Residual Group of RCAB. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| num_block (int): Block number in the body network. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| res_scale (float): Scale the residual. Default: 1. | |
| """ | |
| def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1): | |
| super(ResidualGroup, self).__init__() | |
| self.residual_group = make_layer( | |
| RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale) | |
| self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
| def forward(self, x): | |
| res = self.conv(self.residual_group(x)) | |
| return res + x | |
| def drop_path(x, drop_prob: float = 0., training: bool = False): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
| """ | |
| if drop_prob == 0. or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
| random_tensor.floor_() # binarize | |
| output = x.div(keep_prob) * random_tensor | |
| return output | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
| """ | |
| def __init__(self, drop_prob=None): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training) | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (b, h, w, c) | |
| window_size (int): window size | |
| Returns: | |
| windows: (num_windows*b, window_size, window_size, c) | |
| """ | |
| b, h, w, c = x.shape | |
| x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) | |
| return windows | |
| def window_reverse(windows, window_size, h, w): | |
| """ | |
| Args: | |
| windows: (num_windows*b, window_size, window_size, c) | |
| window_size (int): Window size | |
| h (int): Height of image | |
| w (int): Width of image | |
| Returns: | |
| x: (b, h, w, c) | |
| """ | |
| b = int(windows.shape[0] / (h * w / window_size / window_size)) | |
| x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) | |
| return x | |
| class WindowAttention(nn.Module): | |
| r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim**-0.5 | |
| # define a parameter table of relative position bias | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
| # get pair-wise relative position index for each token inside the window | |
| coords_h = torch.arange(self.window_size[0]) | |
| coords_w = torch.arange(self.window_size[1]) | |
| coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
| coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
| relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
| relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
| self.register_buffer('relative_position_index', relative_position_index) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| trunc_normal_(self.relative_position_bias_table, std=.02) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x, mask=None): | |
| """ | |
| Args: | |
| x: input features with shape of (num_windows*b, n, c) | |
| mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
| """ | |
| b_, n, c = x.shape | |
| qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
| q = q * self.scale | |
| attn = (q @ k.transpose(-2, -1)) | |
| relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
| self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
| relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
| attn = attn + relative_position_bias.unsqueeze(0) | |
| if mask is not None: | |
| nw = mask.shape[0] | |
| attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, n, n) | |
| attn = self.softmax(attn) | |
| else: | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(b_, n, c) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' | |
| def flops(self, n): | |
| # calculate flops for 1 window with token length of n | |
| flops = 0 | |
| # qkv = self.qkv(x) | |
| flops += n * self.dim * 3 * self.dim | |
| # attn = (q @ k.transpose(-2, -1)) | |
| flops += self.num_heads * n * (self.dim // self.num_heads) * n | |
| # x = (attn @ v) | |
| flops += self.num_heads * n * n * (self.dim // self.num_heads) | |
| # x = self.proj(x) | |
| flops += n * self.dim * self.dim | |
| return flops | |
| class SwinTransformerBlock(nn.Module): | |
| r""" Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resolution. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Window size. | |
| shift_size (int): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, | |
| dim, | |
| input_resolution, | |
| num_heads, | |
| window_size=7, | |
| shift_size=0, | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| if min(self.input_resolution) <= self.window_size: | |
| # if window size is larger than input resolution, we don't partition windows | |
| self.shift_size = 0 | |
| self.window_size = min(self.input_resolution) | |
| assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size' | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention( | |
| dim, | |
| window_size=to_2tuple(self.window_size), | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| if self.shift_size > 0: | |
| attn_mask = self.calculate_mask(self.input_resolution) | |
| else: | |
| attn_mask = None | |
| self.register_buffer('attn_mask', attn_mask) | |
| def calculate_mask(self, x_size): | |
| # calculate attention mask for SW-MSA | |
| h, w = x_size | |
| img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1 | |
| h_slices = (slice(0, -self.window_size), slice(-self.window_size, | |
| -self.shift_size), slice(-self.shift_size, None)) | |
| w_slices = (slice(0, -self.window_size), slice(-self.window_size, | |
| -self.shift_size), slice(-self.shift_size, None)) | |
| cnt = 0 | |
| for h in h_slices: | |
| for w in w_slices: | |
| img_mask[:, h, w, :] = cnt | |
| cnt += 1 | |
| mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1 | |
| mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
| attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
| attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
| return attn_mask | |
| def forward(self, x, x_size): | |
| h, w = x_size | |
| b, _, c = x.shape | |
| # assert seq_len == h * w, "input feature has wrong size" | |
| shortcut = x | |
| x = self.norm1(x) | |
| x = x.view(b, h, w, c) | |
| # cyclic shift | |
| if self.shift_size > 0: | |
| shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
| else: | |
| shifted_x = x | |
| # partition windows | |
| x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c | |
| x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c | |
| # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | |
| if self.input_resolution == x_size: | |
| attn_windows = self.attn(x_windows, mask=self.attn_mask) # nw*b, window_size*window_size, c | |
| else: | |
| attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) | |
| shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c | |
| # reverse cyclic shift | |
| if self.shift_size > 0: | |
| x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
| else: | |
| x = shifted_x | |
| x = x.view(b, h * w, c) | |
| # FFN | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| def extra_repr(self) -> str: | |
| return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, ' | |
| f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}') | |
| def flops(self): | |
| flops = 0 | |
| h, w = self.input_resolution | |
| # norm1 | |
| flops += self.dim * h * w | |
| # W-MSA/SW-MSA | |
| nw = h * w / self.window_size / self.window_size | |
| flops += nw * self.attn.flops(self.window_size * self.window_size) | |
| # mlp | |
| flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio | |
| # norm2 | |
| flops += self.dim * h * w | |
| return flops | |
| class PatchMerging(nn.Module): | |
| r""" Patch Merging Layer. | |
| Args: | |
| input_resolution (tuple[int]): Resolution of input feature. | |
| dim (int): Number of input channels. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.input_resolution = input_resolution | |
| self.dim = dim | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x): | |
| """ | |
| x: b, h*w, c | |
| """ | |
| h, w = self.input_resolution | |
| b, seq_len, c = x.shape | |
| assert seq_len == h * w, 'input feature has wrong size' | |
| assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.' | |
| x = x.view(b, h, w, c) | |
| x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c | |
| x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c | |
| x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c | |
| x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c | |
| x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c | |
| x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'input_resolution={self.input_resolution}, dim={self.dim}' | |
| def flops(self): | |
| h, w = self.input_resolution | |
| flops = h * w * self.dim | |
| flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim | |
| return flops | |
| class BasicLayer(nn.Module): | |
| """ A basic Swin Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resolution. | |
| depth (int): Number of blocks. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Local window size. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| """ | |
| def __init__(self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| num_heads, | |
| window_size, | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| SwinTransformerBlock( | |
| dim=dim, | |
| input_resolution=input_resolution, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| shift_size=0 if (i % 2 == 0) else window_size // 2, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer) for i in range(depth) | |
| ]) | |
| # patch merging layer | |
| if downsample is not None: | |
| self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) | |
| else: | |
| self.downsample = None | |
| def forward(self, x, x_size): | |
| for blk in self.blocks: | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x, x_size) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' | |
| def flops(self): | |
| flops = 0 | |
| for blk in self.blocks: | |
| flops += blk.flops() | |
| if self.downsample is not None: | |
| flops += self.downsample.flops() | |
| return flops | |
| class RSTB(nn.Module): | |
| """Residual Swin Transformer Block (RSTB). | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resolution. | |
| depth (int): Number of blocks. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Local window size. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| img_size: Input image size. | |
| patch_size: Patch size. | |
| resi_connection: The convolutional block before residual connection. | |
| """ | |
| def __init__(self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| num_heads, | |
| window_size, | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| use_checkpoint=False, | |
| img_size=224, | |
| patch_size=4, | |
| use_rcab=True, | |
| resi_connection='1conv'): | |
| super(RSTB, self).__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.residual_group = BasicLayer( | |
| dim=dim, | |
| input_resolution=input_resolution, | |
| depth=depth, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path, | |
| norm_layer=norm_layer, | |
| downsample=downsample, | |
| use_checkpoint=use_checkpoint) | |
| # if resi_connection == '1conv': | |
| # # ML-SIM v1 v2 v3 v4 v6 v7 v8 | |
| # self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | |
| # # ML-SIM v5 | |
| # # self.conv = nn.Sequential( | |
| # # nn.PixelUnshuffle(2), | |
| # # nn.Conv2d(4*dim, 4*dim, 3, 1, 1), | |
| # # nn.PixelShuffle(2)) | |
| # elif resi_connection == '3conv': | |
| # # to save parameters and memory | |
| # self.conv = nn.Sequential( | |
| # nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| # nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| # nn.Conv2d(dim // 4, dim, 3, 1, 1)) | |
| self.use_rcab = use_rcab | |
| self.resi_connection1 = nn.Conv2d(dim, dim, 3, 1, 1) | |
| if self.use_rcab: | |
| self.resi_connection2 = ResidualGroup(num_feat=dim,squeeze_factor=16,num_block=12) | |
| self.resi_connection3 = nn.Conv2d(dim, dim, 3, 1, 1) | |
| self.patch_embed = PatchEmbed( | |
| img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) | |
| self.patch_unembed = PatchUnEmbed( | |
| img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) | |
| def forward(self, x, x_size): | |
| # return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x | |
| shortcut = x | |
| x = self.patch_unembed(self.residual_group(x, x_size), x_size) | |
| x = self.resi_connection1(x) | |
| if self.use_rcab: | |
| x = self.resi_connection2(x) | |
| x = self.resi_connection3(x) | |
| x = self.patch_embed(x) + shortcut | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| flops += self.residual_group.flops() | |
| h, w = self.input_resolution | |
| flops += h * w * self.dim * self.dim * 9 | |
| flops += self.patch_embed.flops() | |
| flops += self.patch_unembed.flops() | |
| return flops | |
| class PatchEmbed(nn.Module): | |
| r""" Image to Patch Embedding | |
| Args: | |
| img_size (int): Image size. Default: 224. | |
| patch_size (int): Patch token size. Default: 4. | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.patches_resolution = patches_resolution | |
| self.num_patches = patches_resolution[0] * patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| x = x.flatten(2).transpose(1, 2) # b Ph*Pw c | |
| if self.norm is not None: | |
| x = self.norm(x) | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| h, w = self.img_size | |
| if self.norm is not None: | |
| flops += h * w * self.embed_dim | |
| return flops | |
| class PatchUnEmbed(nn.Module): | |
| r""" Image to Patch Unembedding | |
| Args: | |
| img_size (int): Image size. Default: 224. | |
| patch_size (int): Patch token size. Default: 4. | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.patches_resolution = patches_resolution | |
| self.num_patches = patches_resolution[0] * patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| def forward(self, x, x_size): | |
| x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| return flops | |
| class Upsample(nn.Sequential): | |
| """Upsample module. | |
| Args: | |
| scale (int): Scale factor. Supported scales: 2^n and 3. | |
| num_feat (int): Channel number of intermediate features. | |
| """ | |
| def __init__(self, scale, num_feat): | |
| m = [] | |
| if (scale & (scale - 1)) == 0: # scale = 2^n | |
| for _ in range(int(math.log(scale, 2))): | |
| m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(2)) | |
| elif scale == 3: | |
| m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(3)) | |
| else: | |
| raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
| super(Upsample, self).__init__(*m) | |
| class UpsampleOneStep(nn.Sequential): | |
| """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | |
| Used in lightweight SR to save parameters. | |
| Args: | |
| scale (int): Scale factor. Supported scales: 2^n and 3. | |
| num_feat (int): Channel number of intermediate features. | |
| """ | |
| def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): | |
| self.num_feat = num_feat | |
| self.input_resolution = input_resolution | |
| m = [] | |
| m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(scale)) | |
| super(UpsampleOneStep, self).__init__(*m) | |
| def flops(self): | |
| h, w = self.input_resolution | |
| flops = h * w * self.num_feat * 3 * 9 | |
| return flops | |
| class SwinIR_RCAB(nn.Module): | |
| r""" SwinIR | |
| A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. | |
| Args: | |
| img_size (int | tuple(int)): Input image size. Default 64 | |
| patch_size (int | tuple(int)): Patch size. Default: 1 | |
| in_chans (int): Number of input image channels. Default: 3 | |
| embed_dim (int): Patch embedding dimension. Default: 96 | |
| depths (tuple(int)): Depth of each Swin Transformer layer. | |
| num_heads (tuple(int)): Number of attention heads in different layers. | |
| window_size (int): Window size. Default: 7 | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
| drop_rate (float): Dropout rate. Default: 0 | |
| attn_drop_rate (float): Attention dropout rate. Default: 0 | |
| drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
| norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
| ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
| patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
| upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction | |
| img_range: Image range. 1. or 255. | |
| upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None | |
| resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | |
| """ | |
| def __init__(self, | |
| opt, | |
| img_size=256, | |
| patch_size=1, | |
| in_chans=3, | |
| embed_dim=64, | |
| depths=(6, 6), | |
| num_heads=(8,8), | |
| window_size=4, | |
| mlp_ratio=2., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0.1, | |
| norm_layer=nn.LayerNorm, | |
| ape=False, | |
| patch_norm=True, | |
| use_checkpoint=False, | |
| upscale=2, | |
| img_range=1., | |
| upsampler='', | |
| resi_connection='1conv', | |
| pixelshuffleFactor=1, | |
| use_rcab=True, | |
| out_chans=1, | |
| vis=False, | |
| **kwargs): | |
| super().__init__() | |
| num_in_ch = in_chans | |
| num_out_ch = out_chans#in_chans | |
| num_feat = 64 | |
| self.img_range = img_range | |
| if in_chans == 3: | |
| rgb_mean = (0.4488, 0.4371, 0.4040) | |
| self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | |
| else: | |
| self.mean = torch.zeros(1, 1, 1, 1) | |
| self.upscale = upscale | |
| self.upsampler = upsampler | |
| print('received ',depths,use_rcab) | |
| # ------------------------- 1, shallow feature extraction ------------------------- # | |
| # ML-SIM v1 v2 v3 v6 | |
| # self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | |
| # ML-SIM v4 v5 v8 | |
| # print('received pixelshufflefactor',pixelshuffleFactor) | |
| self.conv_first = nn.Conv2d(round(pixelshuffleFactor**2*num_in_ch), embed_dim, 3, 1, 1) | |
| if pixelshuffleFactor >= 1: | |
| self.pixelshuffle_encode = nn.PixelUnshuffle(pixelshuffleFactor) | |
| self.pixelshuffle_decode = nn.PixelShuffle(pixelshuffleFactor) | |
| else: # e.g. 1/3 | |
| self.pixelshuffle_encode = nn.PixelShuffle(round(1/pixelshuffleFactor)) | |
| self.pixelshuffle_decode = nn.PixelUnshuffle(round(1/pixelshuffleFactor)) | |
| # ML-SIM v7 | |
| # pixelshuffleFactor = kwargs['pixelshuffleFactor'] | |
| # self.conv_first = nn.Conv2d(round(3*pixelshuffleFactor**2*num_in_ch), embed_dim, 3, 1, 1) | |
| # if pixelshuffleFactor > 1: | |
| # self.pixelshuffle_encode = nn.PixelUnshuffle(pixelshuffleFactor) | |
| # self.pixelshuffle_decode = nn.PixelShuffle(pixelshuffleFactor) | |
| # else: # e.g. 1/3 | |
| # self.pixelshuffle_encode = nn.PixelShuffle(round(1/pixelshuffleFactor)) | |
| # self.pixelshuffle_decode = nn.PixelUnshuffle(round(1/pixelshuffleFactor)) | |
| # ------------------------- 2, deep feature extraction ------------------------- # | |
| self.num_layers = len(depths) | |
| self.embed_dim = embed_dim | |
| self.ape = ape | |
| self.patch_norm = patch_norm | |
| self.num_features = embed_dim | |
| self.mlp_ratio = mlp_ratio | |
| # split image into non-overlapping patches | |
| self.patch_embed = PatchEmbed( | |
| img_size=img_size, | |
| patch_size=patch_size, | |
| in_chans=embed_dim, | |
| embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None) | |
| num_patches = self.patch_embed.num_patches | |
| patches_resolution = self.patch_embed.patches_resolution | |
| self.patches_resolution = patches_resolution | |
| # merge non-overlapping patches into image | |
| self.patch_unembed = PatchUnEmbed( | |
| img_size=img_size, | |
| patch_size=patch_size, | |
| in_chans=embed_dim, | |
| embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None) | |
| # absolute position embedding | |
| if self.ape: | |
| self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
| trunc_normal_(self.absolute_pos_embed, std=.02) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| # stochastic depth | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| # build Residual Swin Transformer blocks (RSTB) | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = RSTB( | |
| dim=embed_dim, | |
| input_resolution=(patches_resolution[0], patches_resolution[1]), | |
| depth=depths[i_layer], | |
| num_heads=num_heads[i_layer], | |
| window_size=window_size, | |
| mlp_ratio=self.mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results | |
| norm_layer=norm_layer, | |
| downsample=None, | |
| use_checkpoint=use_checkpoint, | |
| img_size=img_size, | |
| patch_size=patch_size, | |
| use_rcab=use_rcab, | |
| resi_connection=resi_connection) | |
| self.layers.append(layer) | |
| self.norm = norm_layer(self.num_features) | |
| # build the last conv layer in deep feature extraction | |
| if resi_connection == '1conv': | |
| self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | |
| elif resi_connection == '3conv': | |
| # to save parameters and memory | |
| self.conv_after_body = nn.Sequential( | |
| nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) | |
| # ------------------------- 3, high quality image reconstruction ------------------------- # | |
| if self.upsampler == 'pixelshuffle': | |
| # for classical SR | |
| self.conv_before_upsample = nn.Sequential( | |
| nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
| self.upsample = Upsample(upscale, num_feat) | |
| self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
| elif self.upsampler == 'pixelshuffledirect': | |
| # for lightweight SR (to save parameters) | |
| self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, | |
| (patches_resolution[0], patches_resolution[1])) | |
| elif self.upsampler == 'nearest+conv': | |
| # for real-world SR (less artifacts) | |
| assert self.upscale == 4, 'only support x4 now.' | |
| self.conv_before_upsample = nn.Sequential( | |
| nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
| self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
| self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
| self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
| self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
| self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
| else: | |
| # for image denoising and JPEG compression artifact reduction | |
| # self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) # original code | |
| # ML-SIM v1 v6 | |
| # self.conv_last = nn.Conv2d(embed_dim, num_in_ch, 3, 1, 1) | |
| # self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1) | |
| # ML-SIM v2,v3 | |
| # self.conv_last = nn.Conv2d(embed_dim, num_in_ch, 3, 1, 1) | |
| # self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1) | |
| # self.axial_att_block = AxialAttentionBlock(in_channels=9, dim=256, heads=8) | |
| # ML-SIM v4 v5 | |
| # self.conv_last = nn.Conv2d(embed_dim, round(pixelshuffleFactor**2*num_in_ch), 3, 1, 1) | |
| # self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1) | |
| # ML-SIM v7 | |
| # self.conv_last = nn.Conv2d(embed_dim, round(3*pixelshuffleFactor**2*num_in_ch), 3, 1, 1) | |
| # self.conv_combine = nn.Conv2d(3*num_in_ch, num_out_ch, 3, 1, 1) | |
| # ML-SIM v8 | |
| self.conv_before_upsample = nn.Sequential( | |
| nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
| self.upsample = Upsample(upscale, num_feat) | |
| self.conv_last = nn.Conv2d(num_feat, round(pixelshuffleFactor**2*num_in_ch), 3, 1, 1) | |
| self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1) | |
| self.task = opt.task | |
| if self.task == 'segment': | |
| self.segmentation_decode = nn.Conv2d(num_in_ch, 4, 1) | |
| self.vis = vis | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'absolute_pos_embed'} | |
| def no_weight_decay_keywords(self): | |
| return {'relative_position_bias_table'} | |
| def forward_features(self, x): | |
| x_size = (x.shape[2], x.shape[3]) | |
| # print('before patch embed',x.shape) | |
| x = self.patch_embed(x) | |
| # print('after patch embed',x.shape) | |
| if self.ape: | |
| x = x + self.absolute_pos_embed | |
| x = self.pos_drop(x) | |
| for idx,layer in enumerate(self.layers): | |
| x = layer(x, x_size) | |
| if self.vis: | |
| x_unembed = self.patch_unembed(x, x_size) | |
| torch.save(x_unembed.detach().cpu(),'x_layer_%d.pth' % idx) | |
| x = self.norm(x) # b seq_len c | |
| # rint('before patch unembed',x.shape) | |
| x = self.patch_unembed(x, x_size) | |
| # print('before patch unembed',x.shape) | |
| return x | |
| def forward(self, x): | |
| # print('starting forward',x.shape) | |
| self.mean = self.mean.type_as(x) | |
| x = (x - self.mean) * self.img_range | |
| if self.upsampler == 'pixelshuffle': | |
| # for classical SR | |
| x = self.conv_first(x) | |
| x = self.conv_after_body(self.forward_features(x)) + x | |
| x = self.conv_before_upsample(x) | |
| x = self.conv_last(self.upsample(x)) | |
| elif self.upsampler == 'pixelshuffledirect': | |
| # for lightweight SR | |
| x = self.conv_first(x) | |
| x = self.conv_after_body(self.forward_features(x)) + x | |
| x = self.upsample(x) | |
| elif self.upsampler == 'nearest+conv': | |
| # for real-world SR | |
| x = self.conv_first(x) | |
| x = self.conv_after_body(self.forward_features(x)) + x | |
| x = self.conv_before_upsample(x) | |
| x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) | |
| x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) | |
| x = self.conv_last(self.lrelu(self.conv_hr(x))) | |
| else: | |
| # for image denoising and JPEG compression artifact reduction | |
| # ML-SIM v1 v2 v3 | |
| # x_first = self.conv_first(x) | |
| # res = self.conv_after_body(self.forward_features(x_first)) + x_first | |
| # res = self.conv_last(res) | |
| # ML-SIM v1 | |
| # x = self.conv_combine(x + res) | |
| # ML-SIM v2 | |
| # x = self.axial_att_block(x) | |
| # x = self.conv_combine(x + res) | |
| # ML-SIM v3 | |
| # res = self.axial_att_block(res) | |
| # x = self.conv_combine(x + res) | |
| # ML-SIM v4 v5 | |
| # x_encoded = self.pixelshuffle_encode(x) | |
| # x_first = self.conv_first(x_encoded) | |
| # res = self.conv_after_body(self.forward_features(x_first)) + x_first | |
| # res = self.conv_last(res) | |
| # res_decoded = self.pixelshuffle_decode(res) | |
| # x = self.conv_combine(x + res_decoded) | |
| # ML-SIM v6 | |
| # x_encoded = torch.fft.fft2(x,dim=(-1,-2)).real | |
| # x_first = self.conv_first(x_encoded + x) | |
| # res = self.conv_after_body(self.forward_features(x_first)) + x_first | |
| # res = self.conv_last(res) | |
| # x = self.conv_combine(x + res) | |
| # ML-SIM v7 | |
| # x_cos = torch.cos(x) | |
| # x_sin = torch.sin(x) | |
| # x = torch.cat((x,x_cos,x_sin),dim=1) | |
| # x_encoded = self.pixelshuffle_encode(x) | |
| # x_first = self.conv_first(x_encoded) | |
| # res = self.conv_after_body(self.forward_features(x_first)) + x_first | |
| # res = self.conv_last(res) | |
| # res_decoded = self.pixelshuffle_decode(res) | |
| # x = self.conv_combine(x + res_decoded) | |
| # ML-SIM v8 | |
| x_encoded = self.pixelshuffle_encode(x) | |
| # print('after pixelshuffle',x_encoded.shape) | |
| x_first = self.conv_first(x_encoded) | |
| # print('after conv first',x_first.shape) | |
| x_forwardfeat = self.forward_features(x_first) | |
| # print('after forward feat',x_forwardfeat.shape) | |
| res = self.conv_after_body(x_forwardfeat) + x_first | |
| # print('after conv after body',res.shape) | |
| x = self.conv_before_upsample(res) | |
| # print('after conv before upsample',x.shape) | |
| x = self.conv_last(self.upsample(x)) | |
| # print('after conv last',x.shape) | |
| if self.task == 'segment': | |
| x = self.segmentation_decode(x) # assumes pixelshuffle = 1 | |
| else: | |
| res_decoded = self.pixelshuffle_decode(x) | |
| # print('after pixel shuffle',res_decoded.shape) | |
| x = self.conv_combine(res_decoded) | |
| # print('after conv combine',x.shape) | |
| x = x / self.img_range + self.mean | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| h, w = self.patches_resolution | |
| flops += h * w * 3 * self.embed_dim * 9 | |
| flops += self.patch_embed.flops() | |
| for layer in self.layers: | |
| flops += layer.flops() | |
| flops += h * w * 3 * self.embed_dim * self.embed_dim | |
| flops += self.upsample.flops() | |
| return flops | |
| if __name__ == '__main__': | |
| upscale = 4 | |
| window_size = 8 | |
| height = (1024 // upscale // window_size + 1) * window_size | |
| width = (720 // upscale // window_size + 1) * window_size | |
| model = SwinIR( | |
| upscale=2, | |
| img_size=(height, width), | |
| window_size=window_size, | |
| img_range=1., | |
| depths=[6, 6, 6, 6], | |
| embed_dim=60, | |
| num_heads=[6, 6, 6, 6], | |
| mlp_ratio=2, | |
| upsampler='pixelshuffledirect') | |
| print(model) | |
| print(height, width, model.flops() / 1e9) | |
| x = torch.randn((1, 3, height, width)) | |
| x = model(x) | |
| print(x.shape) | |