Spaces:
Runtime error
Runtime error
Commit
·
07aa057
1
Parent(s):
0bf9103
Added architecture definitions
Browse files- archs/swin3d_rcab.py +881 -0
- archs/swinir_rcab.py +1296 -0
- requirements.txt +2 -0
archs/swin3d_rcab.py
ADDED
|
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.utils.checkpoint as checkpoint
|
| 5 |
+
import numpy as np
|
| 6 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 7 |
+
|
| 8 |
+
# from mmcv.runner import load_checkpoint
|
| 9 |
+
# from mmaction.utils import get_root_logger
|
| 10 |
+
# from ..builder import BACKBONES
|
| 11 |
+
|
| 12 |
+
from functools import reduce, lru_cache
|
| 13 |
+
from operator import mul
|
| 14 |
+
from einops import rearrange
|
| 15 |
+
import sys
|
| 16 |
+
|
| 17 |
+
class Upsample(nn.Sequential):
|
| 18 |
+
"""Upsample module.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 22 |
+
num_feat (int): Channel number of intermediate features.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, scale, num_feat):
|
| 26 |
+
m = []
|
| 27 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 28 |
+
for _ in range(int(math.log(scale, 2))):
|
| 29 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 30 |
+
m.append(nn.PixelShuffle(2))
|
| 31 |
+
elif scale == 3:
|
| 32 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 33 |
+
m.append(nn.PixelShuffle(3))
|
| 34 |
+
else:
|
| 35 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
| 36 |
+
super(Upsample, self).__init__(*m)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
| 41 |
+
"""Make layers by stacking the same blocks.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
basic_block (nn.module): nn.module class for basic block.
|
| 45 |
+
num_basic_block (int): number of blocks.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
| 49 |
+
"""
|
| 50 |
+
layers = []
|
| 51 |
+
for _ in range(num_basic_block):
|
| 52 |
+
layers.append(basic_block(**kwarg))
|
| 53 |
+
return nn.Sequential(*layers)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ChannelAttention(nn.Module):
|
| 57 |
+
"""Channel attention used in RCAN.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
num_feat (int): Channel number of intermediate features.
|
| 61 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
def __init__(self, num_feat, squeeze_factor=16):
|
| 65 |
+
super(ChannelAttention, self).__init__()
|
| 66 |
+
self.attention = nn.Sequential(
|
| 67 |
+
nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
| 68 |
+
nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
y = self.attention(x)
|
| 72 |
+
return x * y
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class RCAB(nn.Module):
|
| 76 |
+
"""Residual Channel Attention Block (RCAB) used in RCAN.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
num_feat (int): Channel number of intermediate features.
|
| 80 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 81 |
+
res_scale (float): Scale the residual. Default: 1.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
|
| 85 |
+
super(RCAB, self).__init__()
|
| 86 |
+
self.res_scale = res_scale
|
| 87 |
+
|
| 88 |
+
self.rcab = nn.Sequential(
|
| 89 |
+
nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
|
| 90 |
+
ChannelAttention(num_feat, squeeze_factor))
|
| 91 |
+
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
res = self.rcab(x) * self.res_scale
|
| 94 |
+
return res + x
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class ResidualGroup(nn.Module):
|
| 98 |
+
"""Residual Group of RCAB.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
num_feat (int): Channel number of intermediate features.
|
| 102 |
+
num_block (int): Block number in the body network.
|
| 103 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 104 |
+
res_scale (float): Scale the residual. Default: 1.
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
|
| 108 |
+
super(ResidualGroup, self).__init__()
|
| 109 |
+
|
| 110 |
+
self.residual_group = make_layer(
|
| 111 |
+
RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
|
| 112 |
+
self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
res = self.conv(self.residual_group(x))
|
| 116 |
+
return res + x
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class Mlp(nn.Module):
|
| 120 |
+
""" Multilayer perceptron."""
|
| 121 |
+
|
| 122 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 123 |
+
super().__init__()
|
| 124 |
+
out_features = out_features or in_features
|
| 125 |
+
hidden_features = hidden_features or in_features
|
| 126 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 127 |
+
self.act = act_layer()
|
| 128 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 129 |
+
self.drop = nn.Dropout(drop)
|
| 130 |
+
|
| 131 |
+
def forward(self, x):
|
| 132 |
+
x = self.fc1(x)
|
| 133 |
+
x = self.act(x)
|
| 134 |
+
x = self.drop(x)
|
| 135 |
+
x = self.fc2(x)
|
| 136 |
+
x = self.drop(x)
|
| 137 |
+
return x
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def window_partition(x, window_size):
|
| 141 |
+
"""
|
| 142 |
+
Args:
|
| 143 |
+
x: (B, D, H, W, C)
|
| 144 |
+
window_size (tuple[int]): window size
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
windows: (B*num_windows, window_size*window_size, C)
|
| 148 |
+
"""
|
| 149 |
+
B, D, H, W, C = x.shape
|
| 150 |
+
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C)
|
| 151 |
+
windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C)
|
| 152 |
+
return windows
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def window_reverse(windows, window_size, B, D, H, W):
|
| 156 |
+
"""
|
| 157 |
+
Args:
|
| 158 |
+
windows: (B*num_windows, window_size, window_size, C)
|
| 159 |
+
window_size (tuple[int]): Window size
|
| 160 |
+
H (int): Height of image
|
| 161 |
+
W (int): Width of image
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
x: (B, D, H, W, C)
|
| 165 |
+
"""
|
| 166 |
+
x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1)
|
| 167 |
+
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def get_window_size(x_size, window_size, shift_size=None):
|
| 174 |
+
use_window_size = list(window_size)
|
| 175 |
+
if shift_size is not None:
|
| 176 |
+
use_shift_size = list(shift_size)
|
| 177 |
+
for i in range(len(x_size)):
|
| 178 |
+
if x_size[i] <= window_size[i]:
|
| 179 |
+
use_window_size[i] = x_size[i]
|
| 180 |
+
if shift_size is not None:
|
| 181 |
+
use_shift_size[i] = 0
|
| 182 |
+
|
| 183 |
+
if shift_size is None:
|
| 184 |
+
return tuple(use_window_size)
|
| 185 |
+
else:
|
| 186 |
+
return tuple(use_window_size), tuple(use_shift_size)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class WindowAttention3D(nn.Module):
|
| 190 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
| 191 |
+
It supports both of shifted and non-shifted window.
|
| 192 |
+
Args:
|
| 193 |
+
dim (int): Number of input channels.
|
| 194 |
+
window_size (tuple[int]): The temporal length, height and width of the window.
|
| 195 |
+
num_heads (int): Number of attention heads.
|
| 196 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 197 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
| 198 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
| 199 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 203 |
+
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.dim = dim
|
| 206 |
+
self.window_size = window_size # Wd, Wh, Ww
|
| 207 |
+
self.num_heads = num_heads
|
| 208 |
+
head_dim = dim // num_heads
|
| 209 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 210 |
+
|
| 211 |
+
# define a parameter table of relative position bias
|
| 212 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 213 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
|
| 214 |
+
|
| 215 |
+
# get pair-wise relative position index for each token inside the window
|
| 216 |
+
coords_d = torch.arange(self.window_size[0])
|
| 217 |
+
coords_h = torch.arange(self.window_size[1])
|
| 218 |
+
coords_w = torch.arange(self.window_size[2])
|
| 219 |
+
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww
|
| 220 |
+
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
|
| 221 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww
|
| 222 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
|
| 223 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 224 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 225 |
+
relative_coords[:, :, 2] += self.window_size[2] - 1
|
| 226 |
+
|
| 227 |
+
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
|
| 228 |
+
relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1)
|
| 229 |
+
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
|
| 230 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 231 |
+
|
| 232 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 233 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 234 |
+
self.proj = nn.Linear(dim, dim)
|
| 235 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 236 |
+
|
| 237 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 238 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 239 |
+
|
| 240 |
+
def forward(self, x, mask=None):
|
| 241 |
+
""" Forward function.
|
| 242 |
+
Args:
|
| 243 |
+
x: input features with shape of (num_windows*B, N, C)
|
| 244 |
+
mask: (0/-inf) mask with shape of (num_windows, N, N) or None
|
| 245 |
+
"""
|
| 246 |
+
B_, N, C = x.shape
|
| 247 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 248 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C
|
| 249 |
+
|
| 250 |
+
q = q * self.scale
|
| 251 |
+
attn = q @ k.transpose(-2, -1)
|
| 252 |
+
|
| 253 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape(
|
| 254 |
+
N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH
|
| 255 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
|
| 256 |
+
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
|
| 257 |
+
|
| 258 |
+
if mask is not None:
|
| 259 |
+
nW = mask.shape[0]
|
| 260 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 261 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 262 |
+
attn = self.softmax(attn)
|
| 263 |
+
else:
|
| 264 |
+
attn = self.softmax(attn)
|
| 265 |
+
|
| 266 |
+
attn = self.attn_drop(attn)
|
| 267 |
+
|
| 268 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 269 |
+
x = self.proj(x)
|
| 270 |
+
x = self.proj_drop(x)
|
| 271 |
+
return x
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
class SwinTransformerBlock3D(nn.Module):
|
| 275 |
+
""" Swin Transformer Block.
|
| 276 |
+
|
| 277 |
+
Args:
|
| 278 |
+
dim (int): Number of input channels.
|
| 279 |
+
num_heads (int): Number of attention heads.
|
| 280 |
+
window_size (tuple[int]): Window size.
|
| 281 |
+
shift_size (tuple[int]): Shift size for SW-MSA.
|
| 282 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 283 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 284 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 285 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 286 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 287 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
| 288 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
| 289 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0),
|
| 293 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 294 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False):
|
| 295 |
+
super().__init__()
|
| 296 |
+
self.dim = dim
|
| 297 |
+
self.num_heads = num_heads
|
| 298 |
+
self.window_size = window_size
|
| 299 |
+
self.shift_size = shift_size
|
| 300 |
+
self.mlp_ratio = mlp_ratio
|
| 301 |
+
self.use_checkpoint=use_checkpoint
|
| 302 |
+
|
| 303 |
+
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
|
| 304 |
+
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
|
| 305 |
+
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
|
| 306 |
+
|
| 307 |
+
self.norm1 = norm_layer(dim)
|
| 308 |
+
self.attn = WindowAttention3D(
|
| 309 |
+
dim, window_size=self.window_size, num_heads=num_heads,
|
| 310 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 311 |
+
|
| 312 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 313 |
+
self.norm2 = norm_layer(dim)
|
| 314 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 315 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 316 |
+
|
| 317 |
+
def forward_part1(self, x, mask_matrix):
|
| 318 |
+
B, D, H, W, C = x.shape
|
| 319 |
+
window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size)
|
| 320 |
+
|
| 321 |
+
x = self.norm1(x)
|
| 322 |
+
# pad feature maps to multiples of window size
|
| 323 |
+
pad_l = pad_t = pad_d0 = 0
|
| 324 |
+
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
|
| 325 |
+
pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
|
| 326 |
+
pad_r = (window_size[2] - W % window_size[2]) % window_size[2]
|
| 327 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
|
| 328 |
+
_, Dp, Hp, Wp, _ = x.shape
|
| 329 |
+
# cyclic shift
|
| 330 |
+
if any(i > 0 for i in shift_size):
|
| 331 |
+
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
|
| 332 |
+
attn_mask = mask_matrix
|
| 333 |
+
else:
|
| 334 |
+
shifted_x = x
|
| 335 |
+
attn_mask = None
|
| 336 |
+
# partition windows
|
| 337 |
+
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C
|
| 338 |
+
# W-MSA/SW-MSA
|
| 339 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C
|
| 340 |
+
# merge windows
|
| 341 |
+
attn_windows = attn_windows.view(-1, *(window_size+(C,)))
|
| 342 |
+
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C
|
| 343 |
+
# reverse cyclic shift
|
| 344 |
+
if any(i > 0 for i in shift_size):
|
| 345 |
+
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
|
| 346 |
+
else:
|
| 347 |
+
x = shifted_x
|
| 348 |
+
|
| 349 |
+
if pad_d1 >0 or pad_r > 0 or pad_b > 0:
|
| 350 |
+
x = x[:, :D, :H, :W, :].contiguous()
|
| 351 |
+
return x
|
| 352 |
+
|
| 353 |
+
def forward_part2(self, x):
|
| 354 |
+
return self.drop_path(self.mlp(self.norm2(x)))
|
| 355 |
+
|
| 356 |
+
def forward(self, x, mask_matrix):
|
| 357 |
+
""" Forward function.
|
| 358 |
+
|
| 359 |
+
Args:
|
| 360 |
+
x: Input feature, tensor size (B, D, H, W, C).
|
| 361 |
+
mask_matrix: Attention mask for cyclic shift.
|
| 362 |
+
"""
|
| 363 |
+
|
| 364 |
+
shortcut = x
|
| 365 |
+
if self.use_checkpoint:
|
| 366 |
+
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
|
| 367 |
+
else:
|
| 368 |
+
x = self.forward_part1(x, mask_matrix)
|
| 369 |
+
x = shortcut + self.drop_path(x)
|
| 370 |
+
|
| 371 |
+
if self.use_checkpoint:
|
| 372 |
+
x = x + checkpoint.checkpoint(self.forward_part2, x)
|
| 373 |
+
else:
|
| 374 |
+
x = x + self.forward_part2(x)
|
| 375 |
+
|
| 376 |
+
return x
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
class PatchMerging(nn.Module):
|
| 380 |
+
""" Patch Merging Layer
|
| 381 |
+
|
| 382 |
+
Args:
|
| 383 |
+
dim (int): Number of input channels.
|
| 384 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 385 |
+
"""
|
| 386 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
| 387 |
+
super().__init__()
|
| 388 |
+
self.dim = dim
|
| 389 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
| 390 |
+
self.norm = norm_layer(4 * dim)
|
| 391 |
+
|
| 392 |
+
def forward(self, x):
|
| 393 |
+
""" Forward function.
|
| 394 |
+
|
| 395 |
+
Args:
|
| 396 |
+
x: Input feature, tensor size (B, D, H, W, C).
|
| 397 |
+
"""
|
| 398 |
+
B, D, H, W, C = x.shape
|
| 399 |
+
|
| 400 |
+
# padding
|
| 401 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
| 402 |
+
if pad_input:
|
| 403 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
| 404 |
+
|
| 405 |
+
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C
|
| 406 |
+
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C
|
| 407 |
+
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C
|
| 408 |
+
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C
|
| 409 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C
|
| 410 |
+
|
| 411 |
+
x = self.norm(x)
|
| 412 |
+
x = self.reduction(x)
|
| 413 |
+
|
| 414 |
+
return x
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# cache each stage results
|
| 418 |
+
@lru_cache()
|
| 419 |
+
def compute_mask(D, H, W, window_size, shift_size, device):
|
| 420 |
+
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1
|
| 421 |
+
cnt = 0
|
| 422 |
+
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None):
|
| 423 |
+
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None):
|
| 424 |
+
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None):
|
| 425 |
+
img_mask[:, d, h, w, :] = cnt
|
| 426 |
+
cnt += 1
|
| 427 |
+
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1
|
| 428 |
+
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2]
|
| 429 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 430 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 431 |
+
return attn_mask
|
| 432 |
+
|
| 433 |
+
class RSTB3D(nn.Module):
|
| 434 |
+
""" A basic Swin Transformer layer for one stage.
|
| 435 |
+
|
| 436 |
+
Args:
|
| 437 |
+
dim (int): Number of feature channels
|
| 438 |
+
depth (int): Depths of this stage.
|
| 439 |
+
num_heads (int): Number of attention head.
|
| 440 |
+
window_size (tuple[int]): Local window size. Default: (1,7,7).
|
| 441 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 442 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 443 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 444 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 445 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 446 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 447 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 448 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 449 |
+
"""
|
| 450 |
+
|
| 451 |
+
def __init__(self,
|
| 452 |
+
dim,
|
| 453 |
+
depth,
|
| 454 |
+
num_heads,
|
| 455 |
+
window_size=(1,7,7),
|
| 456 |
+
mlp_ratio=4.,
|
| 457 |
+
qkv_bias=False,
|
| 458 |
+
qk_scale=None,
|
| 459 |
+
drop=0.,
|
| 460 |
+
attn_drop=0.,
|
| 461 |
+
drop_path=0.,
|
| 462 |
+
norm_layer=nn.LayerNorm,
|
| 463 |
+
downsample=None,
|
| 464 |
+
in_chans=1,
|
| 465 |
+
patch_norm=True,
|
| 466 |
+
patch_size=(3,4,4),
|
| 467 |
+
use_checkpoint=False):
|
| 468 |
+
super().__init__()
|
| 469 |
+
self.window_size = window_size
|
| 470 |
+
self.shift_size = tuple(i // 2 for i in window_size)
|
| 471 |
+
self.depth = depth
|
| 472 |
+
self.use_checkpoint = use_checkpoint
|
| 473 |
+
|
| 474 |
+
self.basic_layer = BasicLayer(
|
| 475 |
+
dim=dim,
|
| 476 |
+
depth=depth,
|
| 477 |
+
num_heads=num_heads,
|
| 478 |
+
window_size=window_size,
|
| 479 |
+
mlp_ratio=mlp_ratio,
|
| 480 |
+
qkv_bias=qkv_bias,
|
| 481 |
+
qk_scale=qk_scale,
|
| 482 |
+
drop=drop,
|
| 483 |
+
attn_drop=attn_drop,
|
| 484 |
+
drop_path=drop_path,
|
| 485 |
+
norm_layer=norm_layer,
|
| 486 |
+
# downsample=PatchMerging if i_layer<self.num_layers-1 else None,
|
| 487 |
+
downsample=None,
|
| 488 |
+
use_checkpoint=use_checkpoint)
|
| 489 |
+
|
| 490 |
+
self.resi_connection1 = nn.Conv2d(3, 64, 3, 1, 1)
|
| 491 |
+
self.resi_connection2 = ResidualGroup(num_feat=64,squeeze_factor=16,num_block=12)
|
| 492 |
+
self.resi_connection3 = nn.Conv2d(64, 3, 3, 1, 1)
|
| 493 |
+
|
| 494 |
+
# split image into non-overlapping patches
|
| 495 |
+
self.patch_embed = PatchEmbed3D(
|
| 496 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=dim,
|
| 497 |
+
norm_layer=norm_layer if patch_norm else None)
|
| 498 |
+
|
| 499 |
+
# split image into non-overlapping patches
|
| 500 |
+
self.patch_unembed = PatchUnEmbed3D(
|
| 501 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=dim,
|
| 502 |
+
norm_layer=norm_layer if patch_norm else None)
|
| 503 |
+
|
| 504 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 505 |
+
|
| 506 |
+
def forward(self, x):
|
| 507 |
+
shortcut = x
|
| 508 |
+
x = self.basic_layer(x)
|
| 509 |
+
x = self.patch_unembed(x)
|
| 510 |
+
x = self.resi_connection1(x)
|
| 511 |
+
x = self.lrelu(x)
|
| 512 |
+
x = self.resi_connection2(x)
|
| 513 |
+
x = self.lrelu(x)
|
| 514 |
+
x = self.resi_connection3(x)
|
| 515 |
+
x = self.lrelu(x)
|
| 516 |
+
x = self.patch_embed(x)
|
| 517 |
+
x = x + shortcut
|
| 518 |
+
x = self.lrelu(x)
|
| 519 |
+
return x
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class BasicLayer(nn.Module):
|
| 523 |
+
""" A basic Swin Transformer layer for one stage.
|
| 524 |
+
|
| 525 |
+
Args:
|
| 526 |
+
dim (int): Number of feature channels
|
| 527 |
+
depth (int): Depths of this stage.
|
| 528 |
+
num_heads (int): Number of attention head.
|
| 529 |
+
window_size (tuple[int]): Local window size. Default: (1,7,7).
|
| 530 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 531 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 532 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 533 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 534 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 535 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 536 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 537 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 538 |
+
"""
|
| 539 |
+
|
| 540 |
+
def __init__(self,
|
| 541 |
+
dim,
|
| 542 |
+
depth,
|
| 543 |
+
num_heads,
|
| 544 |
+
window_size=(1,7,7),
|
| 545 |
+
mlp_ratio=4.,
|
| 546 |
+
qkv_bias=False,
|
| 547 |
+
qk_scale=None,
|
| 548 |
+
drop=0.,
|
| 549 |
+
attn_drop=0.,
|
| 550 |
+
drop_path=0.,
|
| 551 |
+
norm_layer=nn.LayerNorm,
|
| 552 |
+
downsample=None,
|
| 553 |
+
use_checkpoint=False):
|
| 554 |
+
super().__init__()
|
| 555 |
+
self.window_size = window_size
|
| 556 |
+
self.shift_size = tuple(i // 2 for i in window_size)
|
| 557 |
+
self.depth = depth
|
| 558 |
+
self.use_checkpoint = use_checkpoint
|
| 559 |
+
|
| 560 |
+
# build blocks
|
| 561 |
+
self.blocks = nn.ModuleList([
|
| 562 |
+
SwinTransformerBlock3D(
|
| 563 |
+
dim=dim,
|
| 564 |
+
num_heads=num_heads,
|
| 565 |
+
window_size=window_size,
|
| 566 |
+
shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size,
|
| 567 |
+
mlp_ratio=mlp_ratio,
|
| 568 |
+
qkv_bias=qkv_bias,
|
| 569 |
+
qk_scale=qk_scale,
|
| 570 |
+
drop=drop,
|
| 571 |
+
attn_drop=attn_drop,
|
| 572 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 573 |
+
norm_layer=norm_layer,
|
| 574 |
+
use_checkpoint=use_checkpoint,
|
| 575 |
+
)
|
| 576 |
+
for i in range(depth)])
|
| 577 |
+
|
| 578 |
+
self.downsample = downsample
|
| 579 |
+
if self.downsample is not None:
|
| 580 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
| 581 |
+
|
| 582 |
+
def forward(self, x):
|
| 583 |
+
""" Forward function.
|
| 584 |
+
|
| 585 |
+
Args:
|
| 586 |
+
x: Input feature, tensor size (B, C, D, H, W).
|
| 587 |
+
"""
|
| 588 |
+
# calculate attention mask for SW-MSA
|
| 589 |
+
B, C, D, H, W = x.shape
|
| 590 |
+
window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size)
|
| 591 |
+
x = rearrange(x, 'b c d h w -> b d h w c')
|
| 592 |
+
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
|
| 593 |
+
Hp = int(np.ceil(H / window_size[1])) * window_size[1]
|
| 594 |
+
Wp = int(np.ceil(W / window_size[2])) * window_size[2]
|
| 595 |
+
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
|
| 596 |
+
for blk in self.blocks:
|
| 597 |
+
x = blk(x, attn_mask)
|
| 598 |
+
x = x.view(B, D, H, W, -1)
|
| 599 |
+
|
| 600 |
+
if self.downsample is not None:
|
| 601 |
+
x = self.downsample(x)
|
| 602 |
+
x = rearrange(x, 'b d h w c -> b c d h w')
|
| 603 |
+
return x
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
class PatchEmbed3D(nn.Module):
|
| 607 |
+
""" Video to Patch Embedding.
|
| 608 |
+
|
| 609 |
+
Args:
|
| 610 |
+
patch_size (int): Patch token size. Default: (2,4,4).
|
| 611 |
+
in_chans (int): Number of input video channels. Default: 3.
|
| 612 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 613 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
| 614 |
+
"""
|
| 615 |
+
def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=None):
|
| 616 |
+
super().__init__()
|
| 617 |
+
self.patch_size = patch_size
|
| 618 |
+
|
| 619 |
+
#print('received patch size', patch_size)
|
| 620 |
+
self.in_chans = in_chans
|
| 621 |
+
self.embed_dim = embed_dim
|
| 622 |
+
|
| 623 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 624 |
+
if norm_layer is not None:
|
| 625 |
+
self.norm = norm_layer(embed_dim)
|
| 626 |
+
else:
|
| 627 |
+
self.norm = None
|
| 628 |
+
|
| 629 |
+
def forward(self, x):
|
| 630 |
+
"""Forward function."""
|
| 631 |
+
x = x.unsqueeze(1) # assuming gray scale video frames are encoded as channels, now separate
|
| 632 |
+
|
| 633 |
+
x = self.proj(x) # B C D Wh Ww
|
| 634 |
+
if self.norm is not None:
|
| 635 |
+
#print('ionside here with self.norm')
|
| 636 |
+
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
|
| 637 |
+
x = x.flatten(2).transpose(1, 2)
|
| 638 |
+
x = self.norm(x)
|
| 639 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
| 640 |
+
|
| 641 |
+
return x
|
| 642 |
+
|
| 643 |
+
class PatchUnEmbed3D(nn.Module):
|
| 644 |
+
def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=nn.LayerNorm):
|
| 645 |
+
super().__init__()
|
| 646 |
+
self.patch_size = patch_size
|
| 647 |
+
|
| 648 |
+
self.in_chans = in_chans
|
| 649 |
+
self.embed_dim = embed_dim
|
| 650 |
+
|
| 651 |
+
unembed_dim = 1
|
| 652 |
+
self.unembed_dim = unembed_dim
|
| 653 |
+
|
| 654 |
+
self.proj = nn.ConvTranspose3d(embed_dim, unembed_dim, kernel_size=patch_size, stride=patch_size)
|
| 655 |
+
self.conv = nn.Conv2d(3*unembed_dim, 3, 3, 1, 1)
|
| 656 |
+
|
| 657 |
+
if norm_layer is not None:
|
| 658 |
+
self.norm = norm_layer(unembed_dim)
|
| 659 |
+
else:
|
| 660 |
+
self.norm = None
|
| 661 |
+
|
| 662 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 663 |
+
|
| 664 |
+
def forward(self, x):
|
| 665 |
+
|
| 666 |
+
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
|
| 667 |
+
# x = x.view(-1,self.embed_dim*D,Wh,Ww)
|
| 668 |
+
x = self.proj(x)
|
| 669 |
+
|
| 670 |
+
# if self.norm is not None:
|
| 671 |
+
# D, Wh, Ww = x.size(2), x.size(3), x.size(4)
|
| 672 |
+
# x = x.flatten(2).transpose(1, 2)
|
| 673 |
+
# x = self.norm(x)
|
| 674 |
+
# x = x.transpose(1, 2).view(-1, self.unembed_dim, D, Wh, Ww)
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
x = self.lrelu(x)
|
| 679 |
+
x = x.view(-1,3*D,4*Wh,4*Ww)
|
| 680 |
+
# x = x.flatten(start_dim=1,end_dim=2)
|
| 681 |
+
# x = x.view(-1,9,4*Wh,4*Ww) # 18 128 128
|
| 682 |
+
x = self.lrelu(self.conv(x)) # 64 128 128
|
| 683 |
+
|
| 684 |
+
return x
|
| 685 |
+
|
| 686 |
+
class Upsampler(nn.Module):
|
| 687 |
+
def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=nn.LayerNorm):
|
| 688 |
+
super().__init__()
|
| 689 |
+
self.patch_size = patch_size
|
| 690 |
+
|
| 691 |
+
self.in_chans = in_chans
|
| 692 |
+
self.embed_dim = embed_dim
|
| 693 |
+
|
| 694 |
+
self.expand = nn.Conv2d(9, 20, 3, 1, 1)
|
| 695 |
+
|
| 696 |
+
self.shuffle = nn.PixelShuffle(2)
|
| 697 |
+
self.fusion = nn.Conv2d(20//4, 1, 3, 1, 1)
|
| 698 |
+
|
| 699 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 700 |
+
|
| 701 |
+
def forward(self, x):
|
| 702 |
+
|
| 703 |
+
# x = x.view(-1,self.embed_dim*D,Wh,Ww)
|
| 704 |
+
x = self.lrelu(self.expand(x))
|
| 705 |
+
x = self.shuffle(x) # 16 256 256
|
| 706 |
+
x = self.lrelu(self.fusion(x))
|
| 707 |
+
|
| 708 |
+
return x
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
class SwinTransformer3D_RCAB(nn.Module):
|
| 712 |
+
""" Swin Transformer backbone.
|
| 713 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
| 714 |
+
https://arxiv.org/pdf/2103.14030
|
| 715 |
+
|
| 716 |
+
Args:
|
| 717 |
+
patch_size (int | tuple(int)): Patch size. Default: (4,4,4).
|
| 718 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 719 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 720 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
| 721 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
| 722 |
+
window_size (int): Window size. Default: 7.
|
| 723 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 724 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
|
| 725 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
| 726 |
+
drop_rate (float): Dropout rate.
|
| 727 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
| 728 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
| 729 |
+
norm_layer: Normalization layer. Default: nn.LayerNorm.
|
| 730 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: False.
|
| 731 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
| 732 |
+
-1 means not freezing any parameters.
|
| 733 |
+
"""
|
| 734 |
+
|
| 735 |
+
def __init__(self,
|
| 736 |
+
opt,
|
| 737 |
+
patch_size=(4,4,4),
|
| 738 |
+
in_chans=1,
|
| 739 |
+
embed_dim=96,
|
| 740 |
+
depths=[2, 2, 6, 2],
|
| 741 |
+
num_heads=[3, 6, 12, 24],
|
| 742 |
+
window_size=(2,7,7),
|
| 743 |
+
mlp_ratio=4.,
|
| 744 |
+
qkv_bias=True,
|
| 745 |
+
qk_scale=None,
|
| 746 |
+
drop_rate=0.,
|
| 747 |
+
attn_drop_rate=0.,
|
| 748 |
+
drop_path_rate=0.2,
|
| 749 |
+
norm_layer=nn.LayerNorm,
|
| 750 |
+
patch_norm=True,
|
| 751 |
+
upscale=2,
|
| 752 |
+
frozen_stages=-1,
|
| 753 |
+
use_checkpoint=False,
|
| 754 |
+
vis=False,
|
| 755 |
+
**kwargs):
|
| 756 |
+
super().__init__()
|
| 757 |
+
|
| 758 |
+
self.num_layers = len(depths)
|
| 759 |
+
self.embed_dim = embed_dim
|
| 760 |
+
self.patch_norm = patch_norm
|
| 761 |
+
self.window_size = window_size
|
| 762 |
+
self.patch_size = patch_size
|
| 763 |
+
|
| 764 |
+
# split image into non-overlapping patches
|
| 765 |
+
self.patch_embed = PatchEmbed3D(
|
| 766 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
| 767 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 768 |
+
|
| 769 |
+
# split image into non-overlapping patches
|
| 770 |
+
self.patch_unembed = PatchUnEmbed3D(
|
| 771 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
| 772 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 773 |
+
|
| 774 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 775 |
+
|
| 776 |
+
# stochastic depth
|
| 777 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 778 |
+
|
| 779 |
+
# build layers
|
| 780 |
+
self.layers = nn.ModuleList()
|
| 781 |
+
for i_layer in range(self.num_layers):
|
| 782 |
+
layer = RSTB3D(
|
| 783 |
+
dim=embed_dim,
|
| 784 |
+
depth=depths[i_layer],
|
| 785 |
+
num_heads=num_heads[i_layer],
|
| 786 |
+
window_size=window_size,
|
| 787 |
+
mlp_ratio=mlp_ratio,
|
| 788 |
+
qkv_bias=qkv_bias,
|
| 789 |
+
qk_scale=qk_scale,
|
| 790 |
+
drop=drop_rate,
|
| 791 |
+
attn_drop=attn_drop_rate,
|
| 792 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
| 793 |
+
norm_layer=norm_layer,
|
| 794 |
+
# downsample=PatchMerging if i_layer<self.num_layers-1 else None,
|
| 795 |
+
downsample=None,
|
| 796 |
+
in_chans=in_chans,
|
| 797 |
+
patch_size=patch_size,
|
| 798 |
+
patch_norm=patch_norm,
|
| 799 |
+
use_checkpoint=use_checkpoint)
|
| 800 |
+
self.layers.append(layer)
|
| 801 |
+
|
| 802 |
+
self.num_features = int(embed_dim)
|
| 803 |
+
|
| 804 |
+
# add a norm layer for each output
|
| 805 |
+
self.norm = norm_layer(self.num_features)
|
| 806 |
+
|
| 807 |
+
self.upsampler = Upsampler(embed_dim=embed_dim)
|
| 808 |
+
self.task = opt.task
|
| 809 |
+
|
| 810 |
+
self.segmentation_decode = nn.Conv2d(3, 4, 1)
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
def init_weights(self, pretrained=None):
|
| 814 |
+
"""Initialize the weights in backbone.
|
| 815 |
+
|
| 816 |
+
Args:
|
| 817 |
+
pretrained (str, optional): Path to pre-trained weights.
|
| 818 |
+
Defaults to None.
|
| 819 |
+
"""
|
| 820 |
+
def _init_weights(m):
|
| 821 |
+
if isinstance(m, nn.Linear):
|
| 822 |
+
trunc_normal_(m.weight, std=.02)
|
| 823 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 824 |
+
nn.init.constant_(m.bias, 0)
|
| 825 |
+
elif isinstance(m, nn.LayerNorm):
|
| 826 |
+
nn.init.constant_(m.bias, 0)
|
| 827 |
+
nn.init.constant_(m.weight, 1.0)
|
| 828 |
+
|
| 829 |
+
if pretrained:
|
| 830 |
+
self.pretrained = pretrained
|
| 831 |
+
# if isinstance(self.pretrained, str):
|
| 832 |
+
# self.apply(_init_weights)
|
| 833 |
+
# logger = get_root_logger()
|
| 834 |
+
# logger.info(f'load model from: {self.pretrained}')
|
| 835 |
+
|
| 836 |
+
# if self.pretrained2d:
|
| 837 |
+
# Inflate 2D model into 3D model.
|
| 838 |
+
# self.inflate_weights(logger)
|
| 839 |
+
# else:
|
| 840 |
+
# Directly load 3D model.
|
| 841 |
+
# load_checkpoint(self, self.pretrained, strict=False, logger=logger)
|
| 842 |
+
elif self.pretrained is None:
|
| 843 |
+
self.apply(_init_weights)
|
| 844 |
+
else:
|
| 845 |
+
raise TypeError('pretrained must be a str or None')
|
| 846 |
+
|
| 847 |
+
def forward(self, x):
|
| 848 |
+
"""Forward function."""
|
| 849 |
+
|
| 850 |
+
shortcut = x
|
| 851 |
+
x = self.patch_embed(x)
|
| 852 |
+
|
| 853 |
+
x = self.pos_drop(x)
|
| 854 |
+
#print('after pos drop',x.shape)
|
| 855 |
+
|
| 856 |
+
for layer in self.layers:
|
| 857 |
+
x = layer(x.contiguous())
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
x = rearrange(x, 'n c d h w -> n d h w c')
|
| 861 |
+
#print('after rearrange',x.shape)
|
| 862 |
+
x = self.norm(x)
|
| 863 |
+
#print('after norm',x.shape)
|
| 864 |
+
x = rearrange(x, 'n d h w c -> n c d h w')
|
| 865 |
+
#print('after rearrange',x.shape)
|
| 866 |
+
|
| 867 |
+
x = self.patch_unembed(x)
|
| 868 |
+
|
| 869 |
+
x = x + shortcut
|
| 870 |
+
|
| 871 |
+
if self.task == 'segment':
|
| 872 |
+
x = self.segmentation_decode(x)
|
| 873 |
+
|
| 874 |
+
else:
|
| 875 |
+
x = self.upsampler(x)
|
| 876 |
+
|
| 877 |
+
return x
|
| 878 |
+
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
|
archs/swinir_rcab.py
ADDED
|
@@ -0,0 +1,1296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from https://github.com/JingyunLiang/SwinIR
|
| 2 |
+
# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
|
| 3 |
+
# Originally Written by Ze Liu, Modified by Jingyun Liang.
|
| 4 |
+
|
| 5 |
+
import collections.abc
|
| 6 |
+
import math
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.utils.checkpoint as checkpoint
|
| 10 |
+
from itertools import repeat
|
| 11 |
+
|
| 12 |
+
# from self_attention_cv import AxialAttentionBlock
|
| 13 |
+
|
| 14 |
+
from functools import reduce, lru_cache
|
| 15 |
+
from operator import mul
|
| 16 |
+
from einops import rearrange
|
| 17 |
+
import sys
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
| 21 |
+
"""Make layers by stacking the same blocks.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
basic_block (nn.module): nn.module class for basic block.
|
| 25 |
+
num_basic_block (int): number of blocks.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
| 29 |
+
"""
|
| 30 |
+
layers = []
|
| 31 |
+
for _ in range(num_basic_block):
|
| 32 |
+
layers.append(basic_block(**kwarg))
|
| 33 |
+
return nn.Sequential(*layers)
|
| 34 |
+
|
| 35 |
+
class Upsample(nn.Sequential):
|
| 36 |
+
"""Upsample module.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 40 |
+
num_feat (int): Channel number of intermediate features.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(self, scale, num_feat):
|
| 44 |
+
m = []
|
| 45 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 46 |
+
for _ in range(int(math.log(scale, 2))):
|
| 47 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 48 |
+
m.append(nn.PixelShuffle(2))
|
| 49 |
+
elif scale == 3:
|
| 50 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 51 |
+
m.append(nn.PixelShuffle(3))
|
| 52 |
+
else:
|
| 53 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
| 54 |
+
super(Upsample, self).__init__(*m)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# From PyTorch
|
| 58 |
+
def _ntuple(n):
|
| 59 |
+
|
| 60 |
+
def parse(x):
|
| 61 |
+
if isinstance(x, collections.abc.Iterable):
|
| 62 |
+
return x
|
| 63 |
+
return tuple(repeat(x, n))
|
| 64 |
+
|
| 65 |
+
return parse
|
| 66 |
+
to_2tuple = _ntuple(2)
|
| 67 |
+
|
| 68 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
| 69 |
+
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 70 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 71 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 72 |
+
def norm_cdf(x):
|
| 73 |
+
# Computes standard normal cumulative distribution function
|
| 74 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 75 |
+
|
| 76 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 77 |
+
warnings.warn(
|
| 78 |
+
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
| 79 |
+
'The distribution of values may be incorrect.',
|
| 80 |
+
stacklevel=2)
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
# Values are generated by using a truncated uniform distribution and
|
| 84 |
+
# then using the inverse CDF for the normal distribution.
|
| 85 |
+
# Get upper and lower cdf values
|
| 86 |
+
low = norm_cdf((a - mean) / std)
|
| 87 |
+
up = norm_cdf((b - mean) / std)
|
| 88 |
+
|
| 89 |
+
# Uniformly fill tensor with values from [low, up], then translate to
|
| 90 |
+
# [2l-1, 2u-1].
|
| 91 |
+
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
| 92 |
+
|
| 93 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 94 |
+
# standard normal
|
| 95 |
+
tensor.erfinv_()
|
| 96 |
+
|
| 97 |
+
# Transform to proper mean, std
|
| 98 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 99 |
+
tensor.add_(mean)
|
| 100 |
+
|
| 101 |
+
# Clamp to ensure it's in the proper range
|
| 102 |
+
tensor.clamp_(min=a, max=b)
|
| 103 |
+
return tensor
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 107 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 108 |
+
normal distribution.
|
| 109 |
+
|
| 110 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 111 |
+
|
| 112 |
+
The values are effectively drawn from the
|
| 113 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 114 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 115 |
+
the bounds. The method used for generating the random values works
|
| 116 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 120 |
+
mean: the mean of the normal distribution
|
| 121 |
+
std: the standard deviation of the normal distribution
|
| 122 |
+
a: the minimum cutoff value
|
| 123 |
+
b: the maximum cutoff value
|
| 124 |
+
|
| 125 |
+
Examples:
|
| 126 |
+
>>> w = torch.empty(3, 5)
|
| 127 |
+
>>> nn.init.trunc_normal_(w)
|
| 128 |
+
"""
|
| 129 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
| 130 |
+
|
| 131 |
+
class ChannelAttention(nn.Module):
|
| 132 |
+
"""Channel attention used in RCAN.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
num_feat (int): Channel number of intermediate features.
|
| 136 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
def __init__(self, num_feat, squeeze_factor=16):
|
| 140 |
+
super(ChannelAttention, self).__init__()
|
| 141 |
+
self.attention = nn.Sequential(
|
| 142 |
+
nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
| 143 |
+
nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
y = self.attention(x)
|
| 147 |
+
return x * y
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class RCAB(nn.Module):
|
| 151 |
+
"""Residual Channel Attention Block (RCAB) used in RCAN.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
num_feat (int): Channel number of intermediate features.
|
| 155 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 156 |
+
res_scale (float): Scale the residual. Default: 1.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
|
| 160 |
+
super(RCAB, self).__init__()
|
| 161 |
+
self.res_scale = res_scale
|
| 162 |
+
|
| 163 |
+
self.rcab = nn.Sequential(
|
| 164 |
+
nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
|
| 165 |
+
ChannelAttention(num_feat, squeeze_factor))
|
| 166 |
+
|
| 167 |
+
def forward(self, x):
|
| 168 |
+
res = self.rcab(x) * self.res_scale
|
| 169 |
+
return res + x
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class ResidualGroup(nn.Module):
|
| 173 |
+
"""Residual Group of RCAB.
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
num_feat (int): Channel number of intermediate features.
|
| 177 |
+
num_block (int): Block number in the body network.
|
| 178 |
+
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
| 179 |
+
res_scale (float): Scale the residual. Default: 1.
|
| 180 |
+
"""
|
| 181 |
+
|
| 182 |
+
def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
|
| 183 |
+
super(ResidualGroup, self).__init__()
|
| 184 |
+
|
| 185 |
+
self.residual_group = make_layer(
|
| 186 |
+
RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
|
| 187 |
+
self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 188 |
+
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
res = self.conv(self.residual_group(x))
|
| 191 |
+
return res + x
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
| 197 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 198 |
+
|
| 199 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
| 200 |
+
"""
|
| 201 |
+
if drop_prob == 0. or not training:
|
| 202 |
+
return x
|
| 203 |
+
keep_prob = 1 - drop_prob
|
| 204 |
+
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 205 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 206 |
+
random_tensor.floor_() # binarize
|
| 207 |
+
output = x.div(keep_prob) * random_tensor
|
| 208 |
+
return output
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class DropPath(nn.Module):
|
| 212 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 213 |
+
|
| 214 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
def __init__(self, drop_prob=None):
|
| 218 |
+
super(DropPath, self).__init__()
|
| 219 |
+
self.drop_prob = drop_prob
|
| 220 |
+
|
| 221 |
+
def forward(self, x):
|
| 222 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class Mlp(nn.Module):
|
| 226 |
+
|
| 227 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 228 |
+
super().__init__()
|
| 229 |
+
out_features = out_features or in_features
|
| 230 |
+
hidden_features = hidden_features or in_features
|
| 231 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 232 |
+
self.act = act_layer()
|
| 233 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 234 |
+
self.drop = nn.Dropout(drop)
|
| 235 |
+
|
| 236 |
+
def forward(self, x):
|
| 237 |
+
x = self.fc1(x)
|
| 238 |
+
x = self.act(x)
|
| 239 |
+
x = self.drop(x)
|
| 240 |
+
x = self.fc2(x)
|
| 241 |
+
x = self.drop(x)
|
| 242 |
+
return x
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def window_partition(x, window_size):
|
| 246 |
+
"""
|
| 247 |
+
Args:
|
| 248 |
+
x: (b, h, w, c)
|
| 249 |
+
window_size (int): window size
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
windows: (num_windows*b, window_size, window_size, c)
|
| 253 |
+
"""
|
| 254 |
+
b, h, w, c = x.shape
|
| 255 |
+
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
|
| 256 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
|
| 257 |
+
return windows
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def window_reverse(windows, window_size, h, w):
|
| 261 |
+
"""
|
| 262 |
+
Args:
|
| 263 |
+
windows: (num_windows*b, window_size, window_size, c)
|
| 264 |
+
window_size (int): Window size
|
| 265 |
+
h (int): Height of image
|
| 266 |
+
w (int): Width of image
|
| 267 |
+
|
| 268 |
+
Returns:
|
| 269 |
+
x: (b, h, w, c)
|
| 270 |
+
"""
|
| 271 |
+
b = int(windows.shape[0] / (h * w / window_size / window_size))
|
| 272 |
+
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
|
| 273 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
|
| 274 |
+
return x
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class WindowAttention(nn.Module):
|
| 278 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
| 279 |
+
It supports both of shifted and non-shifted window.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
dim (int): Number of input channels.
|
| 283 |
+
window_size (tuple[int]): The height and width of the window.
|
| 284 |
+
num_heads (int): Number of attention heads.
|
| 285 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 286 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
| 287 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
| 288 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
| 289 |
+
"""
|
| 290 |
+
|
| 291 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 292 |
+
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.dim = dim
|
| 295 |
+
self.window_size = window_size # Wh, Ww
|
| 296 |
+
self.num_heads = num_heads
|
| 297 |
+
head_dim = dim // num_heads
|
| 298 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 299 |
+
|
| 300 |
+
# define a parameter table of relative position bias
|
| 301 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 302 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
| 303 |
+
|
| 304 |
+
# get pair-wise relative position index for each token inside the window
|
| 305 |
+
coords_h = torch.arange(self.window_size[0])
|
| 306 |
+
coords_w = torch.arange(self.window_size[1])
|
| 307 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 308 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 309 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 310 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 311 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 312 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 313 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 314 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 315 |
+
self.register_buffer('relative_position_index', relative_position_index)
|
| 316 |
+
|
| 317 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 318 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 319 |
+
self.proj = nn.Linear(dim, dim)
|
| 320 |
+
|
| 321 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 322 |
+
|
| 323 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 324 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 325 |
+
|
| 326 |
+
def forward(self, x, mask=None):
|
| 327 |
+
"""
|
| 328 |
+
Args:
|
| 329 |
+
x: input features with shape of (num_windows*b, n, c)
|
| 330 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
| 331 |
+
"""
|
| 332 |
+
b_, n, c = x.shape
|
| 333 |
+
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 334 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 335 |
+
|
| 336 |
+
q = q * self.scale
|
| 337 |
+
attn = (q @ k.transpose(-2, -1))
|
| 338 |
+
|
| 339 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 340 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
| 341 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 342 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 343 |
+
|
| 344 |
+
if mask is not None:
|
| 345 |
+
nw = mask.shape[0]
|
| 346 |
+
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
|
| 347 |
+
attn = attn.view(-1, self.num_heads, n, n)
|
| 348 |
+
attn = self.softmax(attn)
|
| 349 |
+
else:
|
| 350 |
+
attn = self.softmax(attn)
|
| 351 |
+
|
| 352 |
+
attn = self.attn_drop(attn)
|
| 353 |
+
|
| 354 |
+
x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
|
| 355 |
+
x = self.proj(x)
|
| 356 |
+
x = self.proj_drop(x)
|
| 357 |
+
return x
|
| 358 |
+
|
| 359 |
+
def extra_repr(self) -> str:
|
| 360 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
| 361 |
+
|
| 362 |
+
def flops(self, n):
|
| 363 |
+
# calculate flops for 1 window with token length of n
|
| 364 |
+
flops = 0
|
| 365 |
+
# qkv = self.qkv(x)
|
| 366 |
+
flops += n * self.dim * 3 * self.dim
|
| 367 |
+
# attn = (q @ k.transpose(-2, -1))
|
| 368 |
+
flops += self.num_heads * n * (self.dim // self.num_heads) * n
|
| 369 |
+
# x = (attn @ v)
|
| 370 |
+
flops += self.num_heads * n * n * (self.dim // self.num_heads)
|
| 371 |
+
# x = self.proj(x)
|
| 372 |
+
flops += n * self.dim * self.dim
|
| 373 |
+
return flops
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class SwinTransformerBlock(nn.Module):
|
| 377 |
+
r""" Swin Transformer Block.
|
| 378 |
+
|
| 379 |
+
Args:
|
| 380 |
+
dim (int): Number of input channels.
|
| 381 |
+
input_resolution (tuple[int]): Input resolution.
|
| 382 |
+
num_heads (int): Number of attention heads.
|
| 383 |
+
window_size (int): Window size.
|
| 384 |
+
shift_size (int): Shift size for SW-MSA.
|
| 385 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 386 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 387 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 388 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 389 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 390 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
| 391 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
| 392 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
def __init__(self,
|
| 396 |
+
dim,
|
| 397 |
+
input_resolution,
|
| 398 |
+
num_heads,
|
| 399 |
+
window_size=7,
|
| 400 |
+
shift_size=0,
|
| 401 |
+
mlp_ratio=4.,
|
| 402 |
+
qkv_bias=True,
|
| 403 |
+
qk_scale=None,
|
| 404 |
+
drop=0.,
|
| 405 |
+
attn_drop=0.,
|
| 406 |
+
drop_path=0.,
|
| 407 |
+
act_layer=nn.GELU,
|
| 408 |
+
norm_layer=nn.LayerNorm):
|
| 409 |
+
super().__init__()
|
| 410 |
+
self.dim = dim
|
| 411 |
+
self.input_resolution = input_resolution
|
| 412 |
+
self.num_heads = num_heads
|
| 413 |
+
self.window_size = window_size
|
| 414 |
+
self.shift_size = shift_size
|
| 415 |
+
self.mlp_ratio = mlp_ratio
|
| 416 |
+
if min(self.input_resolution) <= self.window_size:
|
| 417 |
+
# if window size is larger than input resolution, we don't partition windows
|
| 418 |
+
self.shift_size = 0
|
| 419 |
+
self.window_size = min(self.input_resolution)
|
| 420 |
+
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
|
| 421 |
+
|
| 422 |
+
self.norm1 = norm_layer(dim)
|
| 423 |
+
self.attn = WindowAttention(
|
| 424 |
+
dim,
|
| 425 |
+
window_size=to_2tuple(self.window_size),
|
| 426 |
+
num_heads=num_heads,
|
| 427 |
+
qkv_bias=qkv_bias,
|
| 428 |
+
qk_scale=qk_scale,
|
| 429 |
+
attn_drop=attn_drop,
|
| 430 |
+
proj_drop=drop)
|
| 431 |
+
|
| 432 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 433 |
+
self.norm2 = norm_layer(dim)
|
| 434 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 435 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 436 |
+
|
| 437 |
+
if self.shift_size > 0:
|
| 438 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
| 439 |
+
else:
|
| 440 |
+
attn_mask = None
|
| 441 |
+
|
| 442 |
+
self.register_buffer('attn_mask', attn_mask)
|
| 443 |
+
|
| 444 |
+
def calculate_mask(self, x_size):
|
| 445 |
+
# calculate attention mask for SW-MSA
|
| 446 |
+
h, w = x_size
|
| 447 |
+
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1
|
| 448 |
+
h_slices = (slice(0, -self.window_size), slice(-self.window_size,
|
| 449 |
+
-self.shift_size), slice(-self.shift_size, None))
|
| 450 |
+
w_slices = (slice(0, -self.window_size), slice(-self.window_size,
|
| 451 |
+
-self.shift_size), slice(-self.shift_size, None))
|
| 452 |
+
cnt = 0
|
| 453 |
+
for h in h_slices:
|
| 454 |
+
for w in w_slices:
|
| 455 |
+
img_mask[:, h, w, :] = cnt
|
| 456 |
+
cnt += 1
|
| 457 |
+
|
| 458 |
+
mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1
|
| 459 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 460 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 461 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 462 |
+
|
| 463 |
+
return attn_mask
|
| 464 |
+
|
| 465 |
+
def forward(self, x, x_size):
|
| 466 |
+
h, w = x_size
|
| 467 |
+
b, _, c = x.shape
|
| 468 |
+
# assert seq_len == h * w, "input feature has wrong size"
|
| 469 |
+
|
| 470 |
+
shortcut = x
|
| 471 |
+
x = self.norm1(x)
|
| 472 |
+
x = x.view(b, h, w, c)
|
| 473 |
+
|
| 474 |
+
# cyclic shift
|
| 475 |
+
if self.shift_size > 0:
|
| 476 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 477 |
+
else:
|
| 478 |
+
shifted_x = x
|
| 479 |
+
|
| 480 |
+
# partition windows
|
| 481 |
+
x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c
|
| 482 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c
|
| 483 |
+
|
| 484 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
| 485 |
+
if self.input_resolution == x_size:
|
| 486 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nw*b, window_size*window_size, c
|
| 487 |
+
else:
|
| 488 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
| 489 |
+
|
| 490 |
+
# merge windows
|
| 491 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
|
| 492 |
+
shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c
|
| 493 |
+
|
| 494 |
+
# reverse cyclic shift
|
| 495 |
+
if self.shift_size > 0:
|
| 496 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 497 |
+
else:
|
| 498 |
+
x = shifted_x
|
| 499 |
+
x = x.view(b, h * w, c)
|
| 500 |
+
|
| 501 |
+
# FFN
|
| 502 |
+
x = shortcut + self.drop_path(x)
|
| 503 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 504 |
+
|
| 505 |
+
return x
|
| 506 |
+
|
| 507 |
+
def extra_repr(self) -> str:
|
| 508 |
+
return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, '
|
| 509 |
+
f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}')
|
| 510 |
+
|
| 511 |
+
def flops(self):
|
| 512 |
+
flops = 0
|
| 513 |
+
h, w = self.input_resolution
|
| 514 |
+
# norm1
|
| 515 |
+
flops += self.dim * h * w
|
| 516 |
+
# W-MSA/SW-MSA
|
| 517 |
+
nw = h * w / self.window_size / self.window_size
|
| 518 |
+
flops += nw * self.attn.flops(self.window_size * self.window_size)
|
| 519 |
+
# mlp
|
| 520 |
+
flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio
|
| 521 |
+
# norm2
|
| 522 |
+
flops += self.dim * h * w
|
| 523 |
+
return flops
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class PatchMerging(nn.Module):
|
| 527 |
+
r""" Patch Merging Layer.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
| 531 |
+
dim (int): Number of input channels.
|
| 532 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
| 536 |
+
super().__init__()
|
| 537 |
+
self.input_resolution = input_resolution
|
| 538 |
+
self.dim = dim
|
| 539 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
| 540 |
+
self.norm = norm_layer(4 * dim)
|
| 541 |
+
|
| 542 |
+
def forward(self, x):
|
| 543 |
+
"""
|
| 544 |
+
x: b, h*w, c
|
| 545 |
+
"""
|
| 546 |
+
h, w = self.input_resolution
|
| 547 |
+
b, seq_len, c = x.shape
|
| 548 |
+
assert seq_len == h * w, 'input feature has wrong size'
|
| 549 |
+
assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
|
| 550 |
+
|
| 551 |
+
x = x.view(b, h, w, c)
|
| 552 |
+
|
| 553 |
+
x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c
|
| 554 |
+
x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c
|
| 555 |
+
x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c
|
| 556 |
+
x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c
|
| 557 |
+
x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c
|
| 558 |
+
x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c
|
| 559 |
+
|
| 560 |
+
x = self.norm(x)
|
| 561 |
+
x = self.reduction(x)
|
| 562 |
+
|
| 563 |
+
return x
|
| 564 |
+
|
| 565 |
+
def extra_repr(self) -> str:
|
| 566 |
+
return f'input_resolution={self.input_resolution}, dim={self.dim}'
|
| 567 |
+
|
| 568 |
+
def flops(self):
|
| 569 |
+
h, w = self.input_resolution
|
| 570 |
+
flops = h * w * self.dim
|
| 571 |
+
flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
|
| 572 |
+
return flops
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
class BasicLayer(nn.Module):
|
| 576 |
+
""" A basic Swin Transformer layer for one stage.
|
| 577 |
+
|
| 578 |
+
Args:
|
| 579 |
+
dim (int): Number of input channels.
|
| 580 |
+
input_resolution (tuple[int]): Input resolution.
|
| 581 |
+
depth (int): Number of blocks.
|
| 582 |
+
num_heads (int): Number of attention heads.
|
| 583 |
+
window_size (int): Local window size.
|
| 584 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 585 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 586 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 587 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 588 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 589 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 590 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 591 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 592 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 593 |
+
"""
|
| 594 |
+
|
| 595 |
+
def __init__(self,
|
| 596 |
+
dim,
|
| 597 |
+
input_resolution,
|
| 598 |
+
depth,
|
| 599 |
+
num_heads,
|
| 600 |
+
window_size,
|
| 601 |
+
mlp_ratio=4.,
|
| 602 |
+
qkv_bias=True,
|
| 603 |
+
qk_scale=None,
|
| 604 |
+
drop=0.,
|
| 605 |
+
attn_drop=0.,
|
| 606 |
+
drop_path=0.,
|
| 607 |
+
norm_layer=nn.LayerNorm,
|
| 608 |
+
downsample=None,
|
| 609 |
+
use_checkpoint=False):
|
| 610 |
+
|
| 611 |
+
super().__init__()
|
| 612 |
+
self.dim = dim
|
| 613 |
+
self.input_resolution = input_resolution
|
| 614 |
+
self.depth = depth
|
| 615 |
+
self.use_checkpoint = use_checkpoint
|
| 616 |
+
|
| 617 |
+
# build blocks
|
| 618 |
+
self.blocks = nn.ModuleList([
|
| 619 |
+
SwinTransformerBlock(
|
| 620 |
+
dim=dim,
|
| 621 |
+
input_resolution=input_resolution,
|
| 622 |
+
num_heads=num_heads,
|
| 623 |
+
window_size=window_size,
|
| 624 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 625 |
+
mlp_ratio=mlp_ratio,
|
| 626 |
+
qkv_bias=qkv_bias,
|
| 627 |
+
qk_scale=qk_scale,
|
| 628 |
+
drop=drop,
|
| 629 |
+
attn_drop=attn_drop,
|
| 630 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 631 |
+
norm_layer=norm_layer) for i in range(depth)
|
| 632 |
+
])
|
| 633 |
+
|
| 634 |
+
# patch merging layer
|
| 635 |
+
if downsample is not None:
|
| 636 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
| 637 |
+
else:
|
| 638 |
+
self.downsample = None
|
| 639 |
+
|
| 640 |
+
def forward(self, x, x_size):
|
| 641 |
+
for blk in self.blocks:
|
| 642 |
+
if self.use_checkpoint:
|
| 643 |
+
x = checkpoint.checkpoint(blk, x)
|
| 644 |
+
else:
|
| 645 |
+
x = blk(x, x_size)
|
| 646 |
+
if self.downsample is not None:
|
| 647 |
+
x = self.downsample(x)
|
| 648 |
+
return x
|
| 649 |
+
|
| 650 |
+
def extra_repr(self) -> str:
|
| 651 |
+
return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
|
| 652 |
+
|
| 653 |
+
def flops(self):
|
| 654 |
+
flops = 0
|
| 655 |
+
for blk in self.blocks:
|
| 656 |
+
flops += blk.flops()
|
| 657 |
+
if self.downsample is not None:
|
| 658 |
+
flops += self.downsample.flops()
|
| 659 |
+
return flops
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
class RSTB(nn.Module):
|
| 663 |
+
"""Residual Swin Transformer Block (RSTB).
|
| 664 |
+
|
| 665 |
+
Args:
|
| 666 |
+
dim (int): Number of input channels.
|
| 667 |
+
input_resolution (tuple[int]): Input resolution.
|
| 668 |
+
depth (int): Number of blocks.
|
| 669 |
+
num_heads (int): Number of attention heads.
|
| 670 |
+
window_size (int): Local window size.
|
| 671 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 672 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 673 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 674 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 675 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 676 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 677 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 678 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 679 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 680 |
+
img_size: Input image size.
|
| 681 |
+
patch_size: Patch size.
|
| 682 |
+
resi_connection: The convolutional block before residual connection.
|
| 683 |
+
"""
|
| 684 |
+
|
| 685 |
+
def __init__(self,
|
| 686 |
+
dim,
|
| 687 |
+
input_resolution,
|
| 688 |
+
depth,
|
| 689 |
+
num_heads,
|
| 690 |
+
window_size,
|
| 691 |
+
mlp_ratio=4.,
|
| 692 |
+
qkv_bias=True,
|
| 693 |
+
qk_scale=None,
|
| 694 |
+
drop=0.,
|
| 695 |
+
attn_drop=0.,
|
| 696 |
+
drop_path=0.,
|
| 697 |
+
norm_layer=nn.LayerNorm,
|
| 698 |
+
downsample=None,
|
| 699 |
+
use_checkpoint=False,
|
| 700 |
+
img_size=224,
|
| 701 |
+
patch_size=4,
|
| 702 |
+
use_rcab=True,
|
| 703 |
+
resi_connection='1conv'):
|
| 704 |
+
super(RSTB, self).__init__()
|
| 705 |
+
|
| 706 |
+
self.dim = dim
|
| 707 |
+
self.input_resolution = input_resolution
|
| 708 |
+
|
| 709 |
+
self.residual_group = BasicLayer(
|
| 710 |
+
dim=dim,
|
| 711 |
+
input_resolution=input_resolution,
|
| 712 |
+
depth=depth,
|
| 713 |
+
num_heads=num_heads,
|
| 714 |
+
window_size=window_size,
|
| 715 |
+
mlp_ratio=mlp_ratio,
|
| 716 |
+
qkv_bias=qkv_bias,
|
| 717 |
+
qk_scale=qk_scale,
|
| 718 |
+
drop=drop,
|
| 719 |
+
attn_drop=attn_drop,
|
| 720 |
+
drop_path=drop_path,
|
| 721 |
+
norm_layer=norm_layer,
|
| 722 |
+
downsample=downsample,
|
| 723 |
+
use_checkpoint=use_checkpoint)
|
| 724 |
+
|
| 725 |
+
# if resi_connection == '1conv':
|
| 726 |
+
# # ML-SIM v1 v2 v3 v4 v6 v7 v8
|
| 727 |
+
# self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 728 |
+
|
| 729 |
+
# # ML-SIM v5
|
| 730 |
+
# # self.conv = nn.Sequential(
|
| 731 |
+
# # nn.PixelUnshuffle(2),
|
| 732 |
+
# # nn.Conv2d(4*dim, 4*dim, 3, 1, 1),
|
| 733 |
+
# # nn.PixelShuffle(2))
|
| 734 |
+
|
| 735 |
+
# elif resi_connection == '3conv':
|
| 736 |
+
# # to save parameters and memory
|
| 737 |
+
# self.conv = nn.Sequential(
|
| 738 |
+
# nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 739 |
+
# nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 740 |
+
# nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
| 741 |
+
|
| 742 |
+
self.use_rcab = use_rcab
|
| 743 |
+
|
| 744 |
+
self.resi_connection1 = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 745 |
+
if self.use_rcab:
|
| 746 |
+
self.resi_connection2 = ResidualGroup(num_feat=dim,squeeze_factor=16,num_block=12)
|
| 747 |
+
self.resi_connection3 = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 748 |
+
|
| 749 |
+
self.patch_embed = PatchEmbed(
|
| 750 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 751 |
+
|
| 752 |
+
self.patch_unembed = PatchUnEmbed(
|
| 753 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 754 |
+
|
| 755 |
+
def forward(self, x, x_size):
|
| 756 |
+
# return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
| 757 |
+
shortcut = x
|
| 758 |
+
x = self.patch_unembed(self.residual_group(x, x_size), x_size)
|
| 759 |
+
x = self.resi_connection1(x)
|
| 760 |
+
if self.use_rcab:
|
| 761 |
+
x = self.resi_connection2(x)
|
| 762 |
+
x = self.resi_connection3(x)
|
| 763 |
+
x = self.patch_embed(x) + shortcut
|
| 764 |
+
return x
|
| 765 |
+
|
| 766 |
+
def flops(self):
|
| 767 |
+
flops = 0
|
| 768 |
+
flops += self.residual_group.flops()
|
| 769 |
+
h, w = self.input_resolution
|
| 770 |
+
flops += h * w * self.dim * self.dim * 9
|
| 771 |
+
flops += self.patch_embed.flops()
|
| 772 |
+
flops += self.patch_unembed.flops()
|
| 773 |
+
|
| 774 |
+
return flops
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
class PatchEmbed(nn.Module):
|
| 778 |
+
r""" Image to Patch Embedding
|
| 779 |
+
|
| 780 |
+
Args:
|
| 781 |
+
img_size (int): Image size. Default: 224.
|
| 782 |
+
patch_size (int): Patch token size. Default: 4.
|
| 783 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 784 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 785 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
| 786 |
+
"""
|
| 787 |
+
|
| 788 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 789 |
+
super().__init__()
|
| 790 |
+
img_size = to_2tuple(img_size)
|
| 791 |
+
patch_size = to_2tuple(patch_size)
|
| 792 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 793 |
+
self.img_size = img_size
|
| 794 |
+
self.patch_size = patch_size
|
| 795 |
+
self.patches_resolution = patches_resolution
|
| 796 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 797 |
+
|
| 798 |
+
self.in_chans = in_chans
|
| 799 |
+
self.embed_dim = embed_dim
|
| 800 |
+
|
| 801 |
+
if norm_layer is not None:
|
| 802 |
+
self.norm = norm_layer(embed_dim)
|
| 803 |
+
else:
|
| 804 |
+
self.norm = None
|
| 805 |
+
|
| 806 |
+
def forward(self, x):
|
| 807 |
+
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
|
| 808 |
+
if self.norm is not None:
|
| 809 |
+
x = self.norm(x)
|
| 810 |
+
return x
|
| 811 |
+
|
| 812 |
+
def flops(self):
|
| 813 |
+
flops = 0
|
| 814 |
+
h, w = self.img_size
|
| 815 |
+
if self.norm is not None:
|
| 816 |
+
flops += h * w * self.embed_dim
|
| 817 |
+
return flops
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
class PatchUnEmbed(nn.Module):
|
| 821 |
+
r""" Image to Patch Unembedding
|
| 822 |
+
|
| 823 |
+
Args:
|
| 824 |
+
img_size (int): Image size. Default: 224.
|
| 825 |
+
patch_size (int): Patch token size. Default: 4.
|
| 826 |
+
in_chans (int): Number of input image channels. Default: 3.
|
| 827 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 828 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
| 829 |
+
"""
|
| 830 |
+
|
| 831 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 832 |
+
super().__init__()
|
| 833 |
+
img_size = to_2tuple(img_size)
|
| 834 |
+
patch_size = to_2tuple(patch_size)
|
| 835 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 836 |
+
self.img_size = img_size
|
| 837 |
+
self.patch_size = patch_size
|
| 838 |
+
self.patches_resolution = patches_resolution
|
| 839 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 840 |
+
|
| 841 |
+
self.in_chans = in_chans
|
| 842 |
+
self.embed_dim = embed_dim
|
| 843 |
+
|
| 844 |
+
def forward(self, x, x_size):
|
| 845 |
+
x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
|
| 846 |
+
return x
|
| 847 |
+
|
| 848 |
+
def flops(self):
|
| 849 |
+
flops = 0
|
| 850 |
+
return flops
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
class Upsample(nn.Sequential):
|
| 854 |
+
"""Upsample module.
|
| 855 |
+
|
| 856 |
+
Args:
|
| 857 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 858 |
+
num_feat (int): Channel number of intermediate features.
|
| 859 |
+
"""
|
| 860 |
+
|
| 861 |
+
def __init__(self, scale, num_feat):
|
| 862 |
+
m = []
|
| 863 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 864 |
+
for _ in range(int(math.log(scale, 2))):
|
| 865 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 866 |
+
m.append(nn.PixelShuffle(2))
|
| 867 |
+
elif scale == 3:
|
| 868 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 869 |
+
m.append(nn.PixelShuffle(3))
|
| 870 |
+
else:
|
| 871 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
| 872 |
+
super(Upsample, self).__init__(*m)
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
class UpsampleOneStep(nn.Sequential):
|
| 876 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
| 877 |
+
Used in lightweight SR to save parameters.
|
| 878 |
+
|
| 879 |
+
Args:
|
| 880 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 881 |
+
num_feat (int): Channel number of intermediate features.
|
| 882 |
+
|
| 883 |
+
"""
|
| 884 |
+
|
| 885 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
| 886 |
+
self.num_feat = num_feat
|
| 887 |
+
self.input_resolution = input_resolution
|
| 888 |
+
m = []
|
| 889 |
+
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
|
| 890 |
+
m.append(nn.PixelShuffle(scale))
|
| 891 |
+
super(UpsampleOneStep, self).__init__(*m)
|
| 892 |
+
|
| 893 |
+
def flops(self):
|
| 894 |
+
h, w = self.input_resolution
|
| 895 |
+
flops = h * w * self.num_feat * 3 * 9
|
| 896 |
+
return flops
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
class SwinIR_RCAB(nn.Module):
|
| 900 |
+
r""" SwinIR
|
| 901 |
+
A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
|
| 902 |
+
|
| 903 |
+
Args:
|
| 904 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
| 905 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
| 906 |
+
in_chans (int): Number of input image channels. Default: 3
|
| 907 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
| 908 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
| 909 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
| 910 |
+
window_size (int): Window size. Default: 7
|
| 911 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 912 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 913 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 914 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 915 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 916 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 917 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 918 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
| 919 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
| 920 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
| 921 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
| 922 |
+
img_range: Image range. 1. or 255.
|
| 923 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
| 924 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
| 925 |
+
"""
|
| 926 |
+
|
| 927 |
+
def __init__(self,
|
| 928 |
+
opt,
|
| 929 |
+
img_size=256,
|
| 930 |
+
patch_size=1,
|
| 931 |
+
in_chans=3,
|
| 932 |
+
embed_dim=64,
|
| 933 |
+
depths=(6, 6),
|
| 934 |
+
num_heads=(8,8),
|
| 935 |
+
window_size=4,
|
| 936 |
+
mlp_ratio=2.,
|
| 937 |
+
qkv_bias=True,
|
| 938 |
+
qk_scale=None,
|
| 939 |
+
drop_rate=0.,
|
| 940 |
+
attn_drop_rate=0.,
|
| 941 |
+
drop_path_rate=0.1,
|
| 942 |
+
norm_layer=nn.LayerNorm,
|
| 943 |
+
ape=False,
|
| 944 |
+
patch_norm=True,
|
| 945 |
+
use_checkpoint=False,
|
| 946 |
+
upscale=2,
|
| 947 |
+
img_range=1.,
|
| 948 |
+
upsampler='',
|
| 949 |
+
resi_connection='1conv',
|
| 950 |
+
pixelshuffleFactor=1,
|
| 951 |
+
use_rcab=True,
|
| 952 |
+
out_chans=1,
|
| 953 |
+
vis=False,
|
| 954 |
+
**kwargs):
|
| 955 |
+
super().__init__()
|
| 956 |
+
num_in_ch = in_chans
|
| 957 |
+
num_out_ch = out_chans#in_chans
|
| 958 |
+
num_feat = 64
|
| 959 |
+
self.img_range = img_range
|
| 960 |
+
if in_chans == 3:
|
| 961 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 962 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 963 |
+
else:
|
| 964 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
| 965 |
+
self.upscale = upscale
|
| 966 |
+
self.upsampler = upsampler
|
| 967 |
+
print('received ',depths,use_rcab)
|
| 968 |
+
|
| 969 |
+
# ------------------------- 1, shallow feature extraction ------------------------- #
|
| 970 |
+
# ML-SIM v1 v2 v3 v6
|
| 971 |
+
# self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 972 |
+
|
| 973 |
+
|
| 974 |
+
# ML-SIM v4 v5 v8
|
| 975 |
+
# print('received pixelshufflefactor',pixelshuffleFactor)
|
| 976 |
+
self.conv_first = nn.Conv2d(round(pixelshuffleFactor**2*num_in_ch), embed_dim, 3, 1, 1)
|
| 977 |
+
if pixelshuffleFactor >= 1:
|
| 978 |
+
self.pixelshuffle_encode = nn.PixelUnshuffle(pixelshuffleFactor)
|
| 979 |
+
self.pixelshuffle_decode = nn.PixelShuffle(pixelshuffleFactor)
|
| 980 |
+
else: # e.g. 1/3
|
| 981 |
+
self.pixelshuffle_encode = nn.PixelShuffle(round(1/pixelshuffleFactor))
|
| 982 |
+
self.pixelshuffle_decode = nn.PixelUnshuffle(round(1/pixelshuffleFactor))
|
| 983 |
+
|
| 984 |
+
# ML-SIM v7
|
| 985 |
+
# pixelshuffleFactor = kwargs['pixelshuffleFactor']
|
| 986 |
+
# self.conv_first = nn.Conv2d(round(3*pixelshuffleFactor**2*num_in_ch), embed_dim, 3, 1, 1)
|
| 987 |
+
# if pixelshuffleFactor > 1:
|
| 988 |
+
# self.pixelshuffle_encode = nn.PixelUnshuffle(pixelshuffleFactor)
|
| 989 |
+
# self.pixelshuffle_decode = nn.PixelShuffle(pixelshuffleFactor)
|
| 990 |
+
# else: # e.g. 1/3
|
| 991 |
+
# self.pixelshuffle_encode = nn.PixelShuffle(round(1/pixelshuffleFactor))
|
| 992 |
+
# self.pixelshuffle_decode = nn.PixelUnshuffle(round(1/pixelshuffleFactor))
|
| 993 |
+
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
|
| 997 |
+
# ------------------------- 2, deep feature extraction ------------------------- #
|
| 998 |
+
self.num_layers = len(depths)
|
| 999 |
+
self.embed_dim = embed_dim
|
| 1000 |
+
self.ape = ape
|
| 1001 |
+
self.patch_norm = patch_norm
|
| 1002 |
+
self.num_features = embed_dim
|
| 1003 |
+
self.mlp_ratio = mlp_ratio
|
| 1004 |
+
|
| 1005 |
+
# split image into non-overlapping patches
|
| 1006 |
+
self.patch_embed = PatchEmbed(
|
| 1007 |
+
img_size=img_size,
|
| 1008 |
+
patch_size=patch_size,
|
| 1009 |
+
in_chans=embed_dim,
|
| 1010 |
+
embed_dim=embed_dim,
|
| 1011 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 1012 |
+
num_patches = self.patch_embed.num_patches
|
| 1013 |
+
patches_resolution = self.patch_embed.patches_resolution
|
| 1014 |
+
self.patches_resolution = patches_resolution
|
| 1015 |
+
|
| 1016 |
+
# merge non-overlapping patches into image
|
| 1017 |
+
self.patch_unembed = PatchUnEmbed(
|
| 1018 |
+
img_size=img_size,
|
| 1019 |
+
patch_size=patch_size,
|
| 1020 |
+
in_chans=embed_dim,
|
| 1021 |
+
embed_dim=embed_dim,
|
| 1022 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 1023 |
+
|
| 1024 |
+
# absolute position embedding
|
| 1025 |
+
if self.ape:
|
| 1026 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
| 1027 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 1028 |
+
|
| 1029 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 1030 |
+
|
| 1031 |
+
# stochastic depth
|
| 1032 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 1033 |
+
|
| 1034 |
+
# build Residual Swin Transformer blocks (RSTB)
|
| 1035 |
+
self.layers = nn.ModuleList()
|
| 1036 |
+
for i_layer in range(self.num_layers):
|
| 1037 |
+
layer = RSTB(
|
| 1038 |
+
dim=embed_dim,
|
| 1039 |
+
input_resolution=(patches_resolution[0], patches_resolution[1]),
|
| 1040 |
+
depth=depths[i_layer],
|
| 1041 |
+
num_heads=num_heads[i_layer],
|
| 1042 |
+
window_size=window_size,
|
| 1043 |
+
mlp_ratio=self.mlp_ratio,
|
| 1044 |
+
qkv_bias=qkv_bias,
|
| 1045 |
+
qk_scale=qk_scale,
|
| 1046 |
+
drop=drop_rate,
|
| 1047 |
+
attn_drop=attn_drop_rate,
|
| 1048 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
| 1049 |
+
norm_layer=norm_layer,
|
| 1050 |
+
downsample=None,
|
| 1051 |
+
use_checkpoint=use_checkpoint,
|
| 1052 |
+
img_size=img_size,
|
| 1053 |
+
patch_size=patch_size,
|
| 1054 |
+
use_rcab=use_rcab,
|
| 1055 |
+
resi_connection=resi_connection)
|
| 1056 |
+
self.layers.append(layer)
|
| 1057 |
+
self.norm = norm_layer(self.num_features)
|
| 1058 |
+
|
| 1059 |
+
# build the last conv layer in deep feature extraction
|
| 1060 |
+
if resi_connection == '1conv':
|
| 1061 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 1062 |
+
elif resi_connection == '3conv':
|
| 1063 |
+
# to save parameters and memory
|
| 1064 |
+
self.conv_after_body = nn.Sequential(
|
| 1065 |
+
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 1066 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 1067 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
| 1068 |
+
|
| 1069 |
+
# ------------------------- 3, high quality image reconstruction ------------------------- #
|
| 1070 |
+
if self.upsampler == 'pixelshuffle':
|
| 1071 |
+
# for classical SR
|
| 1072 |
+
self.conv_before_upsample = nn.Sequential(
|
| 1073 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 1074 |
+
self.upsample = Upsample(upscale, num_feat)
|
| 1075 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 1076 |
+
elif self.upsampler == 'pixelshuffledirect':
|
| 1077 |
+
# for lightweight SR (to save parameters)
|
| 1078 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
| 1079 |
+
(patches_resolution[0], patches_resolution[1]))
|
| 1080 |
+
elif self.upsampler == 'nearest+conv':
|
| 1081 |
+
# for real-world SR (less artifacts)
|
| 1082 |
+
assert self.upscale == 4, 'only support x4 now.'
|
| 1083 |
+
self.conv_before_upsample = nn.Sequential(
|
| 1084 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 1085 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 1086 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 1087 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 1088 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 1089 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 1090 |
+
else:
|
| 1091 |
+
# for image denoising and JPEG compression artifact reduction
|
| 1092 |
+
# self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) # original code
|
| 1093 |
+
|
| 1094 |
+
# ML-SIM v1 v6
|
| 1095 |
+
# self.conv_last = nn.Conv2d(embed_dim, num_in_ch, 3, 1, 1)
|
| 1096 |
+
# self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1)
|
| 1097 |
+
|
| 1098 |
+
# ML-SIM v2,v3
|
| 1099 |
+
# self.conv_last = nn.Conv2d(embed_dim, num_in_ch, 3, 1, 1)
|
| 1100 |
+
# self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1)
|
| 1101 |
+
# self.axial_att_block = AxialAttentionBlock(in_channels=9, dim=256, heads=8)
|
| 1102 |
+
|
| 1103 |
+
# ML-SIM v4 v5
|
| 1104 |
+
# self.conv_last = nn.Conv2d(embed_dim, round(pixelshuffleFactor**2*num_in_ch), 3, 1, 1)
|
| 1105 |
+
# self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1)
|
| 1106 |
+
|
| 1107 |
+
# ML-SIM v7
|
| 1108 |
+
# self.conv_last = nn.Conv2d(embed_dim, round(3*pixelshuffleFactor**2*num_in_ch), 3, 1, 1)
|
| 1109 |
+
# self.conv_combine = nn.Conv2d(3*num_in_ch, num_out_ch, 3, 1, 1)
|
| 1110 |
+
|
| 1111 |
+
# ML-SIM v8
|
| 1112 |
+
self.conv_before_upsample = nn.Sequential(
|
| 1113 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 1114 |
+
self.upsample = Upsample(upscale, num_feat)
|
| 1115 |
+
self.conv_last = nn.Conv2d(num_feat, round(pixelshuffleFactor**2*num_in_ch), 3, 1, 1)
|
| 1116 |
+
self.conv_combine = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1)
|
| 1117 |
+
|
| 1118 |
+
self.task = opt.task
|
| 1119 |
+
if self.task == 'segment':
|
| 1120 |
+
self.segmentation_decode = nn.Conv2d(num_in_ch, 4, 1)
|
| 1121 |
+
self.vis = vis
|
| 1122 |
+
self.apply(self._init_weights)
|
| 1123 |
+
|
| 1124 |
+
def _init_weights(self, m):
|
| 1125 |
+
if isinstance(m, nn.Linear):
|
| 1126 |
+
trunc_normal_(m.weight, std=.02)
|
| 1127 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 1128 |
+
nn.init.constant_(m.bias, 0)
|
| 1129 |
+
elif isinstance(m, nn.LayerNorm):
|
| 1130 |
+
nn.init.constant_(m.bias, 0)
|
| 1131 |
+
nn.init.constant_(m.weight, 1.0)
|
| 1132 |
+
|
| 1133 |
+
@torch.jit.ignore
|
| 1134 |
+
def no_weight_decay(self):
|
| 1135 |
+
return {'absolute_pos_embed'}
|
| 1136 |
+
|
| 1137 |
+
@torch.jit.ignore
|
| 1138 |
+
def no_weight_decay_keywords(self):
|
| 1139 |
+
return {'relative_position_bias_table'}
|
| 1140 |
+
|
| 1141 |
+
def forward_features(self, x):
|
| 1142 |
+
x_size = (x.shape[2], x.shape[3])
|
| 1143 |
+
# print('before patch embed',x.shape)
|
| 1144 |
+
x = self.patch_embed(x)
|
| 1145 |
+
# print('after patch embed',x.shape)
|
| 1146 |
+
if self.ape:
|
| 1147 |
+
x = x + self.absolute_pos_embed
|
| 1148 |
+
x = self.pos_drop(x)
|
| 1149 |
+
|
| 1150 |
+
for idx,layer in enumerate(self.layers):
|
| 1151 |
+
x = layer(x, x_size)
|
| 1152 |
+
if self.vis:
|
| 1153 |
+
x_unembed = self.patch_unembed(x, x_size)
|
| 1154 |
+
torch.save(x_unembed.detach().cpu(),'x_layer_%d.pth' % idx)
|
| 1155 |
+
|
| 1156 |
+
|
| 1157 |
+
x = self.norm(x) # b seq_len c
|
| 1158 |
+
# rint('before patch unembed',x.shape)
|
| 1159 |
+
x = self.patch_unembed(x, x_size)
|
| 1160 |
+
# print('before patch unembed',x.shape)
|
| 1161 |
+
|
| 1162 |
+
return x
|
| 1163 |
+
|
| 1164 |
+
def forward(self, x):
|
| 1165 |
+
# print('starting forward',x.shape)
|
| 1166 |
+
self.mean = self.mean.type_as(x)
|
| 1167 |
+
x = (x - self.mean) * self.img_range
|
| 1168 |
+
|
| 1169 |
+
if self.upsampler == 'pixelshuffle':
|
| 1170 |
+
# for classical SR
|
| 1171 |
+
x = self.conv_first(x)
|
| 1172 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 1173 |
+
x = self.conv_before_upsample(x)
|
| 1174 |
+
x = self.conv_last(self.upsample(x))
|
| 1175 |
+
elif self.upsampler == 'pixelshuffledirect':
|
| 1176 |
+
# for lightweight SR
|
| 1177 |
+
x = self.conv_first(x)
|
| 1178 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 1179 |
+
x = self.upsample(x)
|
| 1180 |
+
elif self.upsampler == 'nearest+conv':
|
| 1181 |
+
# for real-world SR
|
| 1182 |
+
x = self.conv_first(x)
|
| 1183 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 1184 |
+
x = self.conv_before_upsample(x)
|
| 1185 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
| 1186 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
| 1187 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
| 1188 |
+
else:
|
| 1189 |
+
# for image denoising and JPEG compression artifact reduction
|
| 1190 |
+
|
| 1191 |
+
# ML-SIM v1 v2 v3
|
| 1192 |
+
# x_first = self.conv_first(x)
|
| 1193 |
+
# res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
| 1194 |
+
# res = self.conv_last(res)
|
| 1195 |
+
|
| 1196 |
+
# ML-SIM v1
|
| 1197 |
+
# x = self.conv_combine(x + res)
|
| 1198 |
+
|
| 1199 |
+
# ML-SIM v2
|
| 1200 |
+
# x = self.axial_att_block(x)
|
| 1201 |
+
# x = self.conv_combine(x + res)
|
| 1202 |
+
|
| 1203 |
+
# ML-SIM v3
|
| 1204 |
+
# res = self.axial_att_block(res)
|
| 1205 |
+
# x = self.conv_combine(x + res)
|
| 1206 |
+
|
| 1207 |
+
# ML-SIM v4 v5
|
| 1208 |
+
# x_encoded = self.pixelshuffle_encode(x)
|
| 1209 |
+
# x_first = self.conv_first(x_encoded)
|
| 1210 |
+
# res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
| 1211 |
+
# res = self.conv_last(res)
|
| 1212 |
+
# res_decoded = self.pixelshuffle_decode(res)
|
| 1213 |
+
# x = self.conv_combine(x + res_decoded)
|
| 1214 |
+
|
| 1215 |
+
|
| 1216 |
+
# ML-SIM v6
|
| 1217 |
+
# x_encoded = torch.fft.fft2(x,dim=(-1,-2)).real
|
| 1218 |
+
# x_first = self.conv_first(x_encoded + x)
|
| 1219 |
+
# res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
| 1220 |
+
# res = self.conv_last(res)
|
| 1221 |
+
# x = self.conv_combine(x + res)
|
| 1222 |
+
|
| 1223 |
+
# ML-SIM v7
|
| 1224 |
+
# x_cos = torch.cos(x)
|
| 1225 |
+
# x_sin = torch.sin(x)
|
| 1226 |
+
# x = torch.cat((x,x_cos,x_sin),dim=1)
|
| 1227 |
+
# x_encoded = self.pixelshuffle_encode(x)
|
| 1228 |
+
# x_first = self.conv_first(x_encoded)
|
| 1229 |
+
# res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
| 1230 |
+
# res = self.conv_last(res)
|
| 1231 |
+
# res_decoded = self.pixelshuffle_decode(res)
|
| 1232 |
+
# x = self.conv_combine(x + res_decoded)
|
| 1233 |
+
|
| 1234 |
+
# ML-SIM v8
|
| 1235 |
+
x_encoded = self.pixelshuffle_encode(x)
|
| 1236 |
+
|
| 1237 |
+
# print('after pixelshuffle',x_encoded.shape)
|
| 1238 |
+
x_first = self.conv_first(x_encoded)
|
| 1239 |
+
# print('after conv first',x_first.shape)
|
| 1240 |
+
x_forwardfeat = self.forward_features(x_first)
|
| 1241 |
+
# print('after forward feat',x_forwardfeat.shape)
|
| 1242 |
+
res = self.conv_after_body(x_forwardfeat) + x_first
|
| 1243 |
+
# print('after conv after body',res.shape)
|
| 1244 |
+
x = self.conv_before_upsample(res)
|
| 1245 |
+
# print('after conv before upsample',x.shape)
|
| 1246 |
+
x = self.conv_last(self.upsample(x))
|
| 1247 |
+
# print('after conv last',x.shape)
|
| 1248 |
+
|
| 1249 |
+
|
| 1250 |
+
if self.task == 'segment':
|
| 1251 |
+
x = self.segmentation_decode(x) # assumes pixelshuffle = 1
|
| 1252 |
+
else:
|
| 1253 |
+
res_decoded = self.pixelshuffle_decode(x)
|
| 1254 |
+
# print('after pixel shuffle',res_decoded.shape)
|
| 1255 |
+
x = self.conv_combine(res_decoded)
|
| 1256 |
+
# print('after conv combine',x.shape)
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
x = x / self.img_range + self.mean
|
| 1260 |
+
|
| 1261 |
+
return x
|
| 1262 |
+
|
| 1263 |
+
def flops(self):
|
| 1264 |
+
flops = 0
|
| 1265 |
+
h, w = self.patches_resolution
|
| 1266 |
+
flops += h * w * 3 * self.embed_dim * 9
|
| 1267 |
+
flops += self.patch_embed.flops()
|
| 1268 |
+
for layer in self.layers:
|
| 1269 |
+
flops += layer.flops()
|
| 1270 |
+
flops += h * w * 3 * self.embed_dim * self.embed_dim
|
| 1271 |
+
flops += self.upsample.flops()
|
| 1272 |
+
return flops
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
if __name__ == '__main__':
|
| 1276 |
+
upscale = 4
|
| 1277 |
+
window_size = 8
|
| 1278 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
| 1279 |
+
width = (720 // upscale // window_size + 1) * window_size
|
| 1280 |
+
model = SwinIR(
|
| 1281 |
+
upscale=2,
|
| 1282 |
+
img_size=(height, width),
|
| 1283 |
+
window_size=window_size,
|
| 1284 |
+
img_range=1.,
|
| 1285 |
+
depths=[6, 6, 6, 6],
|
| 1286 |
+
embed_dim=60,
|
| 1287 |
+
num_heads=[6, 6, 6, 6],
|
| 1288 |
+
mlp_ratio=2,
|
| 1289 |
+
upsampler='pixelshuffledirect')
|
| 1290 |
+
print(model)
|
| 1291 |
+
print(height, width, model.flops() / 1e9)
|
| 1292 |
+
|
| 1293 |
+
x = torch.randn((1, 3, height, width))
|
| 1294 |
+
x = model(x)
|
| 1295 |
+
print(x.shape)
|
| 1296 |
+
|
requirements.txt
CHANGED
|
@@ -6,3 +6,5 @@ scikit-image
|
|
| 6 |
opencv-python
|
| 7 |
numpy
|
| 8 |
matplotlib
|
|
|
|
|
|
|
|
|
| 6 |
opencv-python
|
| 7 |
numpy
|
| 8 |
matplotlib
|
| 9 |
+
timm
|
| 10 |
+
einops
|