Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| import numpy as np | |
| from timm.models.layers import DropPath, trunc_normal_ | |
| # from mmcv.runner import load_checkpoint | |
| # from mmaction.utils import get_root_logger | |
| # from ..builder import BACKBONES | |
| from functools import reduce, lru_cache | |
| from operator import mul | |
| from einops import rearrange | |
| import sys | |
| class Upsample(nn.Sequential): | |
| """Upsample module. | |
| Args: | |
| scale (int): Scale factor. Supported scales: 2^n and 3. | |
| num_feat (int): Channel number of intermediate features. | |
| """ | |
| def __init__(self, scale, num_feat): | |
| m = [] | |
| if (scale & (scale - 1)) == 0: # scale = 2^n | |
| for _ in range(int(math.log(scale, 2))): | |
| m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(2)) | |
| elif scale == 3: | |
| m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
| m.append(nn.PixelShuffle(3)) | |
| else: | |
| raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
| super(Upsample, self).__init__(*m) | |
| def make_layer(basic_block, num_basic_block, **kwarg): | |
| """Make layers by stacking the same blocks. | |
| Args: | |
| basic_block (nn.module): nn.module class for basic block. | |
| num_basic_block (int): number of blocks. | |
| Returns: | |
| nn.Sequential: Stacked blocks in nn.Sequential. | |
| """ | |
| layers = [] | |
| for _ in range(num_basic_block): | |
| layers.append(basic_block(**kwarg)) | |
| return nn.Sequential(*layers) | |
| class ChannelAttention(nn.Module): | |
| """Channel attention used in RCAN. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| """ | |
| def __init__(self, num_feat, squeeze_factor=16): | |
| super(ChannelAttention, self).__init__() | |
| self.attention = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), | |
| nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid()) | |
| def forward(self, x): | |
| y = self.attention(x) | |
| return x * y | |
| class RCAB(nn.Module): | |
| """Residual Channel Attention Block (RCAB) used in RCAN. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| res_scale (float): Scale the residual. Default: 1. | |
| """ | |
| def __init__(self, num_feat, squeeze_factor=16, res_scale=1): | |
| super(RCAB, self).__init__() | |
| self.res_scale = res_scale | |
| self.rcab = nn.Sequential( | |
| nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1), | |
| ChannelAttention(num_feat, squeeze_factor)) | |
| def forward(self, x): | |
| res = self.rcab(x) * self.res_scale | |
| return res + x | |
| class ResidualGroup(nn.Module): | |
| """Residual Group of RCAB. | |
| Args: | |
| num_feat (int): Channel number of intermediate features. | |
| num_block (int): Block number in the body network. | |
| squeeze_factor (int): Channel squeeze factor. Default: 16. | |
| res_scale (float): Scale the residual. Default: 1. | |
| """ | |
| def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1): | |
| super(ResidualGroup, self).__init__() | |
| self.residual_group = make_layer( | |
| RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale) | |
| self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
| def forward(self, x): | |
| res = self.conv(self.residual_group(x)) | |
| return res + x | |
| class Mlp(nn.Module): | |
| """ Multilayer perceptron.""" | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, D, H, W, C) | |
| window_size (tuple[int]): window size | |
| Returns: | |
| windows: (B*num_windows, window_size*window_size, C) | |
| """ | |
| B, D, H, W, C = x.shape | |
| x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) | |
| windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) | |
| return windows | |
| def window_reverse(windows, window_size, B, D, H, W): | |
| """ | |
| Args: | |
| windows: (B*num_windows, window_size, window_size, C) | |
| window_size (tuple[int]): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, D, H, W, C) | |
| """ | |
| x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) | |
| x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) | |
| return x | |
| def get_window_size(x_size, window_size, shift_size=None): | |
| use_window_size = list(window_size) | |
| if shift_size is not None: | |
| use_shift_size = list(shift_size) | |
| for i in range(len(x_size)): | |
| if x_size[i] <= window_size[i]: | |
| use_window_size[i] = x_size[i] | |
| if shift_size is not None: | |
| use_shift_size[i] = 0 | |
| if shift_size is None: | |
| return tuple(use_window_size) | |
| else: | |
| return tuple(use_window_size), tuple(use_shift_size) | |
| class WindowAttention3D(nn.Module): | |
| """ Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The temporal length, height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wd, Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| # define a parameter table of relative position bias | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH | |
| # get pair-wise relative position index for each token inside the window | |
| coords_d = torch.arange(self.window_size[0]) | |
| coords_h = torch.arange(self.window_size[1]) | |
| coords_w = torch.arange(self.window_size[2]) | |
| coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww | |
| coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww | |
| relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 2] += self.window_size[2] - 1 | |
| relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
| relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1) | |
| relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww | |
| self.register_buffer("relative_position_index", relative_position_index) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| trunc_normal_(self.relative_position_bias_table, std=.02) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x, mask=None): | |
| """ Forward function. | |
| Args: | |
| x: input features with shape of (num_windows*B, N, C) | |
| mask: (0/-inf) mask with shape of (num_windows, N, N) or None | |
| """ | |
| B_, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape( | |
| N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
| relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
| attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N | |
| if mask is not None: | |
| nW = mask.shape[0] | |
| attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, N, N) | |
| attn = self.softmax(attn) | |
| else: | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SwinTransformerBlock3D(nn.Module): | |
| """ Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| window_size (tuple[int]): Window size. | |
| shift_size (tuple[int]): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0), | |
| mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
| act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| self.use_checkpoint=use_checkpoint | |
| assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" | |
| assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" | |
| assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size" | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention3D( | |
| dim, window_size=self.window_size, num_heads=num_heads, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward_part1(self, x, mask_matrix): | |
| B, D, H, W, C = x.shape | |
| window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) | |
| x = self.norm1(x) | |
| # pad feature maps to multiples of window size | |
| pad_l = pad_t = pad_d0 = 0 | |
| pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] | |
| pad_b = (window_size[1] - H % window_size[1]) % window_size[1] | |
| pad_r = (window_size[2] - W % window_size[2]) % window_size[2] | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) | |
| _, Dp, Hp, Wp, _ = x.shape | |
| # cyclic shift | |
| if any(i > 0 for i in shift_size): | |
| shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) | |
| attn_mask = mask_matrix | |
| else: | |
| shifted_x = x | |
| attn_mask = None | |
| # partition windows | |
| x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C | |
| # W-MSA/SW-MSA | |
| attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, *(window_size+(C,))) | |
| shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C | |
| # reverse cyclic shift | |
| if any(i > 0 for i in shift_size): | |
| x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) | |
| else: | |
| x = shifted_x | |
| if pad_d1 >0 or pad_r > 0 or pad_b > 0: | |
| x = x[:, :D, :H, :W, :].contiguous() | |
| return x | |
| def forward_part2(self, x): | |
| return self.drop_path(self.mlp(self.norm2(x))) | |
| def forward(self, x, mask_matrix): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, D, H, W, C). | |
| mask_matrix: Attention mask for cyclic shift. | |
| """ | |
| shortcut = x | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) | |
| else: | |
| x = self.forward_part1(x, mask_matrix) | |
| x = shortcut + self.drop_path(x) | |
| if self.use_checkpoint: | |
| x = x + checkpoint.checkpoint(self.forward_part2, x) | |
| else: | |
| x = x + self.forward_part2(x) | |
| return x | |
| class PatchMerging(nn.Module): | |
| """ Patch Merging Layer | |
| Args: | |
| dim (int): Number of input channels. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.dim = dim | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, D, H, W, C). | |
| """ | |
| B, D, H, W, C = x.shape | |
| # padding | |
| pad_input = (H % 2 == 1) or (W % 2 == 1) | |
| if pad_input: | |
| x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
| x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C | |
| x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C | |
| x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C | |
| x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C | |
| x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| # cache each stage results | |
| def compute_mask(D, H, W, window_size, shift_size, device): | |
| img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 | |
| cnt = 0 | |
| for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None): | |
| for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None): | |
| for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None): | |
| img_mask[:, d, h, w, :] = cnt | |
| cnt += 1 | |
| mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 | |
| mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] | |
| attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
| attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
| return attn_mask | |
| class RSTB3D(nn.Module): | |
| """ A basic Swin Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of feature channels | |
| depth (int): Depths of this stage. | |
| num_heads (int): Number of attention head. | |
| window_size (tuple[int]): Local window size. Default: (1,7,7). | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| """ | |
| def __init__(self, | |
| dim, | |
| depth, | |
| num_heads, | |
| window_size=(1,7,7), | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| in_chans=1, | |
| patch_norm=True, | |
| patch_size=(3,4,4), | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.window_size = window_size | |
| self.shift_size = tuple(i // 2 for i in window_size) | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| self.basic_layer = BasicLayer( | |
| dim=dim, | |
| depth=depth, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path, | |
| norm_layer=norm_layer, | |
| # downsample=PatchMerging if i_layer<self.num_layers-1 else None, | |
| downsample=None, | |
| use_checkpoint=use_checkpoint) | |
| self.resi_connection1 = nn.Conv2d(3, 64, 3, 1, 1) | |
| self.resi_connection2 = ResidualGroup(num_feat=64,squeeze_factor=16,num_block=12) | |
| self.resi_connection3 = nn.Conv2d(64, 3, 3, 1, 1) | |
| # split image into non-overlapping patches | |
| self.patch_embed = PatchEmbed3D( | |
| patch_size=patch_size, in_chans=in_chans, embed_dim=dim, | |
| norm_layer=norm_layer if patch_norm else None) | |
| # split image into non-overlapping patches | |
| self.patch_unembed = PatchUnEmbed3D( | |
| patch_size=patch_size, in_chans=in_chans, embed_dim=dim, | |
| norm_layer=norm_layer if patch_norm else None) | |
| self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.basic_layer(x) | |
| x = self.patch_unembed(x) | |
| x = self.resi_connection1(x) | |
| x = self.lrelu(x) | |
| x = self.resi_connection2(x) | |
| x = self.lrelu(x) | |
| x = self.resi_connection3(x) | |
| x = self.lrelu(x) | |
| x = self.patch_embed(x) | |
| x = x + shortcut | |
| x = self.lrelu(x) | |
| return x | |
| class BasicLayer(nn.Module): | |
| """ A basic Swin Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of feature channels | |
| depth (int): Depths of this stage. | |
| num_heads (int): Number of attention head. | |
| window_size (tuple[int]): Local window size. Default: (1,7,7). | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| """ | |
| def __init__(self, | |
| dim, | |
| depth, | |
| num_heads, | |
| window_size=(1,7,7), | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.window_size = window_size | |
| self.shift_size = tuple(i // 2 for i in window_size) | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| SwinTransformerBlock3D( | |
| dim=dim, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer, | |
| use_checkpoint=use_checkpoint, | |
| ) | |
| for i in range(depth)]) | |
| self.downsample = downsample | |
| if self.downsample is not None: | |
| self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
| def forward(self, x): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, C, D, H, W). | |
| """ | |
| # calculate attention mask for SW-MSA | |
| B, C, D, H, W = x.shape | |
| window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size) | |
| x = rearrange(x, 'b c d h w -> b d h w c') | |
| Dp = int(np.ceil(D / window_size[0])) * window_size[0] | |
| Hp = int(np.ceil(H / window_size[1])) * window_size[1] | |
| Wp = int(np.ceil(W / window_size[2])) * window_size[2] | |
| attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) | |
| for blk in self.blocks: | |
| x = blk(x, attn_mask) | |
| x = x.view(B, D, H, W, -1) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| x = rearrange(x, 'b d h w c -> b c d h w') | |
| return x | |
| class PatchEmbed3D(nn.Module): | |
| """ Video to Patch Embedding. | |
| Args: | |
| patch_size (int): Patch token size. Default: (2,4,4). | |
| in_chans (int): Number of input video channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=None): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| #print('received patch size', patch_size) | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| """Forward function.""" | |
| x = x.unsqueeze(1) # assuming gray scale video frames are encoded as channels, now separate | |
| x = self.proj(x) # B C D Wh Ww | |
| if self.norm is not None: | |
| #print('ionside here with self.norm') | |
| D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
| return x | |
| class PatchUnEmbed3D(nn.Module): | |
| def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| unembed_dim = 1 | |
| self.unembed_dim = unembed_dim | |
| self.proj = nn.ConvTranspose3d(embed_dim, unembed_dim, kernel_size=patch_size, stride=patch_size) | |
| self.conv = nn.Conv2d(3*unembed_dim, 3, 3, 1, 1) | |
| if norm_layer is not None: | |
| self.norm = norm_layer(unembed_dim) | |
| else: | |
| self.norm = None | |
| self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
| def forward(self, x): | |
| D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
| # x = x.view(-1,self.embed_dim*D,Wh,Ww) | |
| x = self.proj(x) | |
| # if self.norm is not None: | |
| # D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
| # x = x.flatten(2).transpose(1, 2) | |
| # x = self.norm(x) | |
| # x = x.transpose(1, 2).view(-1, self.unembed_dim, D, Wh, Ww) | |
| x = self.lrelu(x) | |
| x = x.view(-1,3*D,4*Wh,4*Ww) | |
| # x = x.flatten(start_dim=1,end_dim=2) | |
| # x = x.view(-1,9,4*Wh,4*Ww) # 18 128 128 | |
| x = self.lrelu(self.conv(x)) # 64 128 128 | |
| return x | |
| class Upsampler(nn.Module): | |
| def __init__(self, patch_size=(3,4,4), in_chans=3, embed_dim=96, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| self.expand = nn.Conv2d(9, 20, 3, 1, 1) | |
| self.shuffle = nn.PixelShuffle(2) | |
| self.fusion = nn.Conv2d(20//4, 1, 3, 1, 1) | |
| self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
| def forward(self, x): | |
| # x = x.view(-1,self.embed_dim*D,Wh,Ww) | |
| x = self.lrelu(self.expand(x)) | |
| x = self.shuffle(x) # 16 256 256 | |
| x = self.lrelu(self.fusion(x)) | |
| return x | |
| class SwinTransformer3D_RCAB(nn.Module): | |
| """ Swin Transformer backbone. | |
| A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
| https://arxiv.org/pdf/2103.14030 | |
| Args: | |
| patch_size (int | tuple(int)): Patch size. Default: (4,4,4). | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| depths (tuple[int]): Depths of each Swin Transformer stage. | |
| num_heads (tuple[int]): Number of attention head of each stage. | |
| window_size (int): Window size. Default: 7. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee | |
| qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
| drop_rate (float): Dropout rate. | |
| attn_drop_rate (float): Attention dropout rate. Default: 0. | |
| drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
| norm_layer: Normalization layer. Default: nn.LayerNorm. | |
| patch_norm (bool): If True, add normalization after patch embedding. Default: False. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. | |
| """ | |
| def __init__(self, | |
| opt, | |
| patch_size=(4,4,4), | |
| in_chans=1, | |
| embed_dim=96, | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_size=(2,7,7), | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0.2, | |
| norm_layer=nn.LayerNorm, | |
| patch_norm=True, | |
| upscale=2, | |
| frozen_stages=-1, | |
| use_checkpoint=False, | |
| vis=False, | |
| **kwargs): | |
| super().__init__() | |
| self.num_layers = len(depths) | |
| self.embed_dim = embed_dim | |
| self.patch_norm = patch_norm | |
| self.window_size = window_size | |
| self.patch_size = patch_size | |
| # split image into non-overlapping patches | |
| self.patch_embed = PatchEmbed3D( | |
| patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None) | |
| # split image into non-overlapping patches | |
| self.patch_unembed = PatchUnEmbed3D( | |
| patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| # stochastic depth | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| # build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = RSTB3D( | |
| dim=embed_dim, | |
| depth=depths[i_layer], | |
| num_heads=num_heads[i_layer], | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
| norm_layer=norm_layer, | |
| # downsample=PatchMerging if i_layer<self.num_layers-1 else None, | |
| downsample=None, | |
| in_chans=in_chans, | |
| patch_size=patch_size, | |
| patch_norm=patch_norm, | |
| use_checkpoint=use_checkpoint) | |
| self.layers.append(layer) | |
| self.num_features = int(embed_dim) | |
| # add a norm layer for each output | |
| self.norm = norm_layer(self.num_features) | |
| self.upsampler = Upsampler(embed_dim=embed_dim) | |
| self.task = opt.task | |
| self.segmentation_decode = nn.Conv2d(3, 4, 1) | |
| def init_weights(self, pretrained=None): | |
| """Initialize the weights in backbone. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| def _init_weights(m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| if pretrained: | |
| self.pretrained = pretrained | |
| # if isinstance(self.pretrained, str): | |
| # self.apply(_init_weights) | |
| # logger = get_root_logger() | |
| # logger.info(f'load model from: {self.pretrained}') | |
| # if self.pretrained2d: | |
| # Inflate 2D model into 3D model. | |
| # self.inflate_weights(logger) | |
| # else: | |
| # Directly load 3D model. | |
| # load_checkpoint(self, self.pretrained, strict=False, logger=logger) | |
| elif self.pretrained is None: | |
| self.apply(_init_weights) | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def forward(self, x): | |
| """Forward function.""" | |
| shortcut = x | |
| x = self.patch_embed(x) | |
| x = self.pos_drop(x) | |
| #print('after pos drop',x.shape) | |
| for layer in self.layers: | |
| x = layer(x.contiguous()) | |
| x = rearrange(x, 'n c d h w -> n d h w c') | |
| #print('after rearrange',x.shape) | |
| x = self.norm(x) | |
| #print('after norm',x.shape) | |
| x = rearrange(x, 'n d h w c -> n c d h w') | |
| #print('after rearrange',x.shape) | |
| x = self.patch_unembed(x) | |
| x = x + shortcut | |
| if self.task == 'segment': | |
| x = self.segmentation_decode(x) | |
| else: | |
| x = self.upsampler(x) | |
| return x | |