Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -136,55 +136,68 @@ class VideoSearch:
|
|
| 136 |
st.warning("Using example data embeddings")
|
| 137 |
self.dataset = self.load_example_data()
|
| 138 |
|
| 139 |
-
# Debug
|
| 140 |
-
st.write("
|
| 141 |
-
st.write("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
# Convert string representations of embeddings back to numpy arrays
|
| 144 |
-
def
|
| 145 |
try:
|
| 146 |
-
#
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
# Split by
|
| 150 |
-
|
| 151 |
-
return
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
except Exception as e:
|
| 154 |
-
st.error(f"Error parsing embedding: {e}")
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
-
# Process embeddings
|
| 158 |
video_embeds = []
|
| 159 |
text_embeds = []
|
| 160 |
|
| 161 |
for idx in range(len(self.dataset)):
|
| 162 |
try:
|
| 163 |
-
video_embed =
|
| 164 |
-
desc_embed =
|
| 165 |
|
| 166 |
-
if video_embed and desc_embed:
|
| 167 |
video_embeds.append(video_embed)
|
| 168 |
text_embeds.append(desc_embed)
|
|
|
|
|
|
|
| 169 |
except Exception as e:
|
| 170 |
-
st.error(f"Error processing row {idx}: {e}")
|
|
|
|
| 171 |
|
| 172 |
if video_embeds and text_embeds:
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
else:
|
| 177 |
-
st.warning("
|
| 178 |
num_rows = len(self.dataset)
|
| 179 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 180 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 181 |
|
| 182 |
-
# Debug output
|
| 183 |
-
st.write("Video embeddings shape:", self.video_embeds.shape)
|
| 184 |
-
st.write("Text embeddings shape:", self.text_embeds.shape)
|
| 185 |
-
|
| 186 |
except Exception as e:
|
| 187 |
-
st.error(f"Error preparing features: {e}")
|
| 188 |
import traceback
|
| 189 |
st.write("Traceback:", traceback.format_exc())
|
| 190 |
# Create random embeddings as fallback
|
|
|
|
| 136 |
st.warning("Using example data embeddings")
|
| 137 |
self.dataset = self.load_example_data()
|
| 138 |
|
| 139 |
+
# Debug: Show raw data types and first row
|
| 140 |
+
st.write("Data Types:", self.dataset.dtypes)
|
| 141 |
+
st.write("\nFirst row of embeddings:")
|
| 142 |
+
st.write("video_embed type:", type(self.dataset['video_embed'].iloc[0]))
|
| 143 |
+
st.write("video_embed content:", self.dataset['video_embed'].iloc[0])
|
| 144 |
+
st.write("\ndescription_embed type:", type(self.dataset['description_embed'].iloc[0]))
|
| 145 |
+
st.write("description_embed content:", self.dataset['description_embed'].iloc[0])
|
| 146 |
|
| 147 |
# Convert string representations of embeddings back to numpy arrays
|
| 148 |
+
def safe_eval_list(s):
|
| 149 |
try:
|
| 150 |
+
# Clean the string representation
|
| 151 |
+
if isinstance(s, str):
|
| 152 |
+
s = s.replace('[', '').replace(']', '').strip()
|
| 153 |
+
# Split by whitespace and/or commas
|
| 154 |
+
numbers = [float(x.strip()) for x in s.split() if x.strip()]
|
| 155 |
+
return numbers
|
| 156 |
+
elif isinstance(s, list):
|
| 157 |
+
return [float(x) for x in s]
|
| 158 |
+
else:
|
| 159 |
+
st.error(f"Unexpected type for embedding: {type(s)}")
|
| 160 |
+
return None
|
| 161 |
except Exception as e:
|
| 162 |
+
st.error(f"Error parsing embedding: {str(e)}")
|
| 163 |
+
st.write("Problematic string:", s)
|
| 164 |
+
return None
|
| 165 |
|
| 166 |
+
# Process embeddings with detailed error reporting
|
| 167 |
video_embeds = []
|
| 168 |
text_embeds = []
|
| 169 |
|
| 170 |
for idx in range(len(self.dataset)):
|
| 171 |
try:
|
| 172 |
+
video_embed = safe_eval_list(self.dataset['video_embed'].iloc[idx])
|
| 173 |
+
desc_embed = safe_eval_list(self.dataset['description_embed'].iloc[idx])
|
| 174 |
|
| 175 |
+
if video_embed is not None and desc_embed is not None:
|
| 176 |
video_embeds.append(video_embed)
|
| 177 |
text_embeds.append(desc_embed)
|
| 178 |
+
else:
|
| 179 |
+
st.warning(f"Skipping row {idx} due to parsing failure")
|
| 180 |
except Exception as e:
|
| 181 |
+
st.error(f"Error processing row {idx}: {str(e)}")
|
| 182 |
+
st.write("Row data:", self.dataset.iloc[idx])
|
| 183 |
|
| 184 |
if video_embeds and text_embeds:
|
| 185 |
+
try:
|
| 186 |
+
self.video_embeds = np.array(video_embeds)
|
| 187 |
+
self.text_embeds = np.array(text_embeds)
|
| 188 |
+
st.success(f"Successfully processed {len(video_embeds)} embeddings")
|
| 189 |
+
st.write("Video embeddings shape:", self.video_embeds.shape)
|
| 190 |
+
st.write("Text embeddings shape:", self.text_embeds.shape)
|
| 191 |
+
except Exception as e:
|
| 192 |
+
st.error(f"Error converting to numpy arrays: {str(e)}")
|
| 193 |
else:
|
| 194 |
+
st.warning("No valid embeddings found, using random embeddings")
|
| 195 |
num_rows = len(self.dataset)
|
| 196 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 197 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
+
st.error(f"Error preparing features: {str(e)}")
|
| 201 |
import traceback
|
| 202 |
st.write("Traceback:", traceback.format_exc())
|
| 203 |
# Create random embeddings as fallback
|