Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -136,19 +136,57 @@ class VideoSearch:
|
|
| 136 |
st.warning("Using example data embeddings")
|
| 137 |
self.dataset = self.load_example_data()
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
# Convert string representations of embeddings back to numpy arrays
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
num_rows = len(self.dataset)
|
| 148 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 149 |
self.text_embeds = np.random.randn(num_rows, 384)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
except Exception as e:
|
| 151 |
st.error(f"Error preparing features: {e}")
|
|
|
|
|
|
|
| 152 |
# Create random embeddings as fallback
|
| 153 |
num_rows = len(self.dataset)
|
| 154 |
self.video_embeds = np.random.randn(num_rows, 384)
|
|
|
|
| 136 |
st.warning("Using example data embeddings")
|
| 137 |
self.dataset = self.load_example_data()
|
| 138 |
|
| 139 |
+
# Debug the embedding data
|
| 140 |
+
st.write("Sample video_embed:", self.dataset['video_embed'].iloc[0])
|
| 141 |
+
st.write("Sample description_embed:", self.dataset['description_embed'].iloc[0])
|
| 142 |
+
|
| 143 |
# Convert string representations of embeddings back to numpy arrays
|
| 144 |
+
def parse_embedding(embed_str):
|
| 145 |
+
try:
|
| 146 |
+
# Remove any string formatting artifacts
|
| 147 |
+
cleaned_str = str(embed_str).strip()
|
| 148 |
+
if cleaned_str.startswith('[') and cleaned_str.endswith(']'):
|
| 149 |
+
# Split by comma and convert to floats
|
| 150 |
+
values = [float(x.strip()) for x in cleaned_str[1:-1].split(',')]
|
| 151 |
+
return values
|
| 152 |
+
return []
|
| 153 |
+
except Exception as e:
|
| 154 |
+
st.error(f"Error parsing embedding: {e}")
|
| 155 |
+
return []
|
| 156 |
+
|
| 157 |
+
# Process embeddings
|
| 158 |
+
video_embeds = []
|
| 159 |
+
text_embeds = []
|
| 160 |
+
|
| 161 |
+
for idx in range(len(self.dataset)):
|
| 162 |
+
try:
|
| 163 |
+
video_embed = parse_embedding(self.dataset['video_embed'].iloc[idx])
|
| 164 |
+
desc_embed = parse_embedding(self.dataset['description_embed'].iloc[idx])
|
| 165 |
+
|
| 166 |
+
if video_embed and desc_embed:
|
| 167 |
+
video_embeds.append(video_embed)
|
| 168 |
+
text_embeds.append(desc_embed)
|
| 169 |
+
except Exception as e:
|
| 170 |
+
st.error(f"Error processing row {idx}: {e}")
|
| 171 |
+
|
| 172 |
+
if video_embeds and text_embeds:
|
| 173 |
+
self.video_embeds = np.array(video_embeds)
|
| 174 |
+
self.text_embeds = np.array(text_embeds)
|
| 175 |
+
st.success(f"Successfully processed {len(video_embeds)} embeddings")
|
| 176 |
+
else:
|
| 177 |
+
st.warning("Falling back to random embeddings")
|
| 178 |
num_rows = len(self.dataset)
|
| 179 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 180 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 181 |
+
|
| 182 |
+
# Debug output
|
| 183 |
+
st.write("Video embeddings shape:", self.video_embeds.shape)
|
| 184 |
+
st.write("Text embeddings shape:", self.text_embeds.shape)
|
| 185 |
+
|
| 186 |
except Exception as e:
|
| 187 |
st.error(f"Error preparing features: {e}")
|
| 188 |
+
import traceback
|
| 189 |
+
st.write("Traceback:", traceback.format_exc())
|
| 190 |
# Create random embeddings as fallback
|
| 191 |
num_rows = len(self.dataset)
|
| 192 |
self.video_embeds = np.random.randn(num_rows, 384)
|