File size: 11,942 Bytes
76810fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

# sjt_answers_viewer.py
# Gradio viewer for case_study_answers.json
# - Shows one question at a time
# - Dropdown 1: filter by **Name**
# - Dropdown 2: filter by **Selected Trait** (HEXACO slice)
# - Underlines & highlights the actually selected option + trait name
# - Always orders options consistently (HEXACO)
# - Top "Summary" bar shows proportion of selections by trait (under current Name filter)

import json
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import random

import gradio as gr
import matplotlib.pyplot as plt

# ---------- Constants ----------

DATA_PATH = Path("case_study_answers.json")

HEXACO_ORDER = [
    "hh",
    "emotionality",
    "extraversion",
    "agreeableness",
    "conscientiousness",
    "openness",
]

TRAIT_LABELS = {
    "hh": "Honesty–Humility",
    "emotionality": "Emotionality",
    "extraversion": "Extraversion",
    "agreeableness": "Agreeableness",
    "conscientiousness": "Conscientiousness",
    "openness": "Openness",
}

# ---------- Icons ----------

ICONS = {
    "header": "πŸ“",
    "question": "❓",
    "options": "βœ…",
    "summary": "πŸ“Š",
    "progress": "⏭️",
    "metadata": "πŸ”–",
    "filters": "πŸŽ›οΈ",
}

# ---------- Data Loading & Normalization ----------

def load_json(path: Path) -> Any:
    if not path.exists():
        return []
    with path.open("r", encoding="utf-8") as f:
        return json.load(f)

def _safe_get_question_block(item: Dict[str, Any]) -> Tuple[str, Dict[str, str], Optional[str]]:
    """
    Extract (question_text, options_map, selected_trait) from a raw item.
    Heuristics:
      - Selected trait is at top-level key 'option'.
      - Question text/options may be under item['question'] with nested 'corrected_sjt' or 'original_sjt'.
      - Options are expected as keys like '<trait>_option' where trait ∈ HEXACO_ORDER.
    """
    selected = item.get("option")

    q = item.get("question", {}) or {}
    block = q.get("corrected_sjt") or q.get("original_sjt") or {}

    question_text = ""
    options: Dict[str, str] = {}

    if isinstance(block, dict):
        question_text = block.get("question") or q.get("question") or ""
        for trait in HEXACO_ORDER:
            k = f"{trait}_option"
            if k in block:
                options[trait] = str(block[k]).strip()
            elif k in q:
                options[trait] = str(q[k]).strip()
    else:
        # sometimes block is a plain string
        question_text = str(block) if block else str(q.get("question", ""))

    # Fallback: look for options directly on item if missing
    if not options and isinstance(q, dict):
        for trait in HEXACO_ORDER:
            k = f"{trait}_option"
            if k in q:
                options[trait] = str(q[k]).strip()

    return question_text.strip(), options, selected

def flatten_entries(raw: Any) -> List[Dict[str, Any]]:
    """
    Returns a list of entries with keys:
      - name (str)
      - question (str)
      - options (dict[trait->text])
      - selected (trait str)
    """
    out: List[Dict[str, Any]] = []

    def handle_item(obj: Dict[str, Any], default_name: str):
        q_text, opts, sel = _safe_get_question_block(obj)
        # Prefer name from object if present; else inherit from container
        nm = (obj.get("name") or default_name or "Unknown").strip() or "Unknown"
        if q_text and opts and sel:
            out.append({"name": nm, "question": q_text, "options": opts, "selected": sel})

    if isinstance(raw, list):
        for x in raw:
            if isinstance(x, dict):
                handle_item(x, "Unknown")
    elif isinstance(raw, dict):
        # Could be {persona_name: [items]} or {persona_name: {...}} etc.
        for k, v in raw.items():
            default_name = str(k)
            if isinstance(v, list):
                for x in v:
                    if isinstance(x, dict):
                        handle_item(x, default_name)
            elif isinstance(v, dict):
                handle_item(v, default_name)
    return out

DATA_RAW = load_json(DATA_PATH)
DATA: List[Dict[str, Any]] = flatten_entries(DATA_RAW)

# Unique names for dropdown
def all_names(entries: List[Dict[str, Any]]) -> List[str]:
    seen = []
    for e in entries:
        nm = e.get("name", "Unknown") or "Unknown"
        if nm not in seen:
            seen.append(nm)
    return sorted(seen)

NAME_FILTERS = ["All"] + all_names(DATA)
TRAIT_FILTERS = ["All"] + HEXACO_ORDER

# ---------- Filtering & Navigation ----------

def get_filtered_indices(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str) -> List[int]:
    idxs = list(range(len(entries)))
    if name_filt != "All":
        idxs = [i for i in idxs if entries[i].get("name") == name_filt]
    if trait_filt != "All":
        idxs = [i for i in idxs if entries[i].get("selected") == trait_filt]
    return idxs

def clamp_index(i: int, n: int) -> int:
    return 0 if n == 0 else (i % n)

# ---------- Summary ----------

def compute_summary(entries: List[Dict[str, Any]]):
    total = len(entries)
    counts = {t: 0 for t in HEXACO_ORDER}
    for e in entries:
        sel = e.get("selected")
        if sel in counts:
            counts[sel] += 1
    labels = [TRAIT_LABELS[t] for t in HEXACO_ORDER]
    props = [counts[t] / total if total else 0.0 for t in HEXACO_ORDER]
    return labels, props, counts, total

def summary_plot(entries: List[Dict[str, Any]]):
    # Returns Markdown with proportions per trait under the current Name filter
    labels, props, counts, total = compute_summary(entries)
    lines = ["## πŸ“Š Summary (Name filter)", f"**Total:** {total}"]
    for label, p in zip(labels, props):
        lines.append(f"- {label}: {p:.2f}")
    return "\n".join(lines)

# ---------- Rendering ----------

def md_question(entry: Dict[str, Any]) -> str:
    q = entry.get("question", "")
    name = entry.get("name", "β€”")
    return f"## {ICONS['question']} Question\n**Name:** {name}\n\n{q if q else 'β€”'}"

def md_options(entry: Dict[str, Any]) -> str:
    opts: Dict[str, str] = entry.get("options", {})
    selected = entry.get("selected")
    lines = []
    for i, trait in enumerate(HEXACO_ORDER, start=1):
        if trait not in opts:
            continue
        label = TRAIT_LABELS[trait]
        text = opts[trait]
        if trait == selected:
            # underline + highlight both the label and the text
            line = (
                f"{i}. <u><mark><strong>{label}</strong>:</mark></u> "
                f"<u><mark>{text}</mark></u>"
            )
        else:
            line = f"{i}. **{label}:** {text}"
        lines.append(line)
    body = "\n\n".join(lines) if lines else "β€”"
    return f"## {ICONS['options']} Options (HEXACO order)\n{body}"

def md_metadata(entry: Dict[str, Any], idx: int, total_in_filter: int) -> str:
    sel = entry.get("selected", "β€”")
    sel_disp = TRAIT_LABELS.get(sel, sel)
    nm = entry.get("name", "β€”")
    return (
        f"## {ICONS['metadata']} Metadata\n"
        f"**Name:** {nm}  \n"
        f"**Selected Option (Trait):** {sel_disp}  \n"
        f"**Position in Filter:** {idx + 1} / {total_in_filter}"
    )

def md_progress(idx: int, total: int) -> str:
    return f"## {ICONS['progress']} Progress\n**{idx + 1} / {total}**"

def render(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str, pos: int):
    # For summary, use "name-only" filter to show that persona's distribution
    name_only_indices = [i for i, e in enumerate(entries) if (name_filt == "All" or e.get("name") == name_filt)]
    name_only_slice = [entries[i] for i in name_only_indices]

    # For the main view selection, apply both filters
    indices = get_filtered_indices(entries, name_filt, trait_filt)
    n = len(indices)

    if n == 0:
        return (
            summary_plot(name_only_slice),
            f"## {ICONS['question']} Question\n_No questions for filters **Name={name_filt}**, **Trait={trait_filt}**._",
            f"## {ICONS['options']} Options\nβ€”",
            f"## {ICONS['metadata']} Metadata\nβ€”",
            f"## {ICONS['progress']} Progress\n0 / 0",
            0,  # expose pos back
        )

    pos = clamp_index(pos, n)
    entry = entries[indices[pos]]
    return (
        summary_plot(name_only_slice),
        md_question(entry),
        md_options(entry),
        md_metadata(entry, pos, n),
        md_progress(pos, n),
        pos,  # expose pos back
    )

# ---------- Gradio App ----------

with gr.Blocks(title="SJT Answers Viewer") as demo:
    gr.Markdown("# SJT Answers Viewer")
    gr.Markdown(
        f"{ICONS['filters']} **Filters:** Choose a Name and a HEXACO Selected-Trait slice.\n\n"
        f"{ICONS['summary']} **Summary:** Bar shows the trait-selection proportions under the current **Name** filter.\n\n"
        "Options are consistently ordered by HEXACO. The actual selected option is underlined and highlighted."
    )

    with gr.Row():
        name_dd = gr.Dropdown(choices=NAME_FILTERS, value="All", label="Filter by Name", interactive=True)
        trait_dd = gr.Dropdown(choices=TRAIT_FILTERS, value="All", label="Filter by Selected Trait", interactive=True)
        st_pos = gr.State(0)

    with gr.Row():
        prev_btn = gr.Button("Previous")
        next_btn = gr.Button("Next")
        rand_btn = gr.Button("Random")

    # Outputs
    summary_out = gr.Markdown(label="Selections Summary (Name filter)")
    question_out = gr.Markdown()
    options_out = gr.Markdown()
    metadata_out = gr.Markdown()
    progress_out = gr.Markdown()

    # ----- Callbacks -----
    def on_filters_change(name_filt: str, trait_filt: str):
        return [*render(DATA, name_filt, trait_filt, 0), 0]

    def on_prev(name_filt: str, trait_filt: str, pos: int):
        indices = get_filtered_indices(DATA, name_filt, trait_filt)
        if not indices:
            return [*render(DATA, name_filt, trait_filt, pos), pos]
        pos = clamp_index(pos - 1, len(indices))
        return [*render(DATA, name_filt, trait_filt, pos), pos]

    def on_next(name_filt: str, trait_filt: str, pos: int):
        indices = get_filtered_indices(DATA, name_filt, trait_filt)
        if not indices:
            return [*render(DATA, name_filt, trait_filt, pos), pos]
        pos = clamp_index(pos + 1, len(indices))
        return [*render(DATA, name_filt, trait_filt, pos), pos]

    def on_rand(name_filt: str, trait_filt: str, pos: int):
        indices = get_filtered_indices(DATA, name_filt, trait_filt)
        if not indices:
            return [*render(DATA, name_filt, trait_filt, pos), pos]
        pos = random.randrange(len(indices))
        return [*render(DATA, name_filt, trait_filt, pos), pos]

    name_dd.change(
        on_filters_change,
        inputs=[name_dd, trait_dd],
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )
    trait_dd.change(
        on_filters_change,
        inputs=[name_dd, trait_dd],
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )

    prev_btn.click(
        on_prev,
        inputs=[name_dd, trait_dd, st_pos],
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )
    next_btn.click(
        on_next,
        inputs=[name_dd, trait_dd, st_pos],
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )
    rand_btn.click(
        on_rand,
        inputs=[name_dd, trait_dd, st_pos],
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )

    # initial load
    demo.load(
        lambda: [*render(DATA, "All", "All", 0), 0],
        inputs=None,
        outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
    )

if __name__ == "__main__":
    demo.launch()