Commit
ยท
76810fa
1
Parent(s):
123f01a
divergence only.
Browse files- app.py +134 -250
- backup_app.py +339 -0
app.py
CHANGED
|
@@ -1,36 +1,30 @@
|
|
| 1 |
|
| 2 |
-
#
|
| 3 |
-
# Gradio
|
| 4 |
-
# -
|
| 5 |
-
# -
|
| 6 |
-
# -
|
| 7 |
-
# -
|
| 8 |
-
# - Always orders options consistently (HEXACO)
|
| 9 |
-
# - Top "Summary" bar shows proportion of selections by trait (under current Name filter)
|
| 10 |
|
| 11 |
import json
|
| 12 |
from pathlib import Path
|
| 13 |
from typing import List, Dict, Any, Optional, Tuple
|
| 14 |
import random
|
| 15 |
-
|
| 16 |
import gradio as gr
|
| 17 |
-
import matplotlib.pyplot as plt
|
| 18 |
-
|
| 19 |
-
# ---------- Constants ----------
|
| 20 |
|
| 21 |
DATA_PATH = Path("case_study_answers.json")
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
"emotionality",
|
| 26 |
"extraversion",
|
| 27 |
"agreeableness",
|
| 28 |
"conscientiousness",
|
| 29 |
"openness",
|
| 30 |
]
|
| 31 |
-
|
| 32 |
TRAIT_LABELS = {
|
| 33 |
-
"
|
| 34 |
"emotionality": "Emotionality",
|
| 35 |
"extraversion": "Extraversion",
|
| 36 |
"agreeableness": "Agreeableness",
|
|
@@ -38,19 +32,35 @@ TRAIT_LABELS = {
|
|
| 38 |
"openness": "Openness",
|
| 39 |
}
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
"
|
| 45 |
-
"
|
| 46 |
-
"
|
| 47 |
-
"
|
| 48 |
-
"
|
| 49 |
-
"
|
| 50 |
-
"
|
|
|
|
| 51 |
}
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def load_json(path: Path) -> Any:
|
| 56 |
if not path.exists():
|
|
@@ -59,65 +69,40 @@ def load_json(path: Path) -> Any:
|
|
| 59 |
return json.load(f)
|
| 60 |
|
| 61 |
def _safe_get_question_block(item: Dict[str, Any]) -> Tuple[str, Dict[str, str], Optional[str]]:
|
| 62 |
-
""
|
| 63 |
-
Extract (question_text, options_map, selected_trait) from a raw item.
|
| 64 |
-
Heuristics:
|
| 65 |
-
- Selected trait is at top-level key 'option'.
|
| 66 |
-
- Question text/options may be under item['question'] with nested 'corrected_sjt' or 'original_sjt'.
|
| 67 |
-
- Options are expected as keys like '<trait>_option' where trait โ HEXACO_ORDER.
|
| 68 |
-
"""
|
| 69 |
-
selected = item.get("option")
|
| 70 |
-
|
| 71 |
q = item.get("question", {}) or {}
|
| 72 |
block = q.get("corrected_sjt") or q.get("original_sjt") or {}
|
| 73 |
|
| 74 |
question_text = ""
|
| 75 |
options: Dict[str, str] = {}
|
| 76 |
-
|
| 77 |
if isinstance(block, dict):
|
| 78 |
question_text = block.get("question") or q.get("question") or ""
|
| 79 |
-
for
|
| 80 |
-
|
| 81 |
-
if
|
| 82 |
-
options[
|
| 83 |
-
elif k in q:
|
| 84 |
-
options[trait] = str(q[k]).strip()
|
| 85 |
else:
|
| 86 |
-
# sometimes block is a plain string
|
| 87 |
question_text = str(block) if block else str(q.get("question", ""))
|
| 88 |
|
| 89 |
-
# Fallback: look for options directly on item if missing
|
| 90 |
if not options and isinstance(q, dict):
|
| 91 |
-
for
|
| 92 |
-
|
| 93 |
-
if
|
| 94 |
-
options[
|
| 95 |
-
|
| 96 |
return question_text.strip(), options, selected
|
| 97 |
|
| 98 |
def flatten_entries(raw: Any) -> List[Dict[str, Any]]:
|
| 99 |
-
"""
|
| 100 |
-
Returns a list of entries with keys:
|
| 101 |
-
- name (str)
|
| 102 |
-
- question (str)
|
| 103 |
-
- options (dict[trait->text])
|
| 104 |
-
- selected (trait str)
|
| 105 |
-
"""
|
| 106 |
out: List[Dict[str, Any]] = []
|
| 107 |
-
|
| 108 |
def handle_item(obj: Dict[str, Any], default_name: str):
|
| 109 |
q_text, opts, sel = _safe_get_question_block(obj)
|
| 110 |
-
# Prefer name from object if present; else inherit from container
|
| 111 |
nm = (obj.get("name") or default_name or "Unknown").strip() or "Unknown"
|
| 112 |
if q_text and opts and sel:
|
| 113 |
out.append({"name": nm, "question": q_text, "options": opts, "selected": sel})
|
| 114 |
-
|
| 115 |
if isinstance(raw, list):
|
| 116 |
for x in raw:
|
| 117 |
if isinstance(x, dict):
|
| 118 |
handle_item(x, "Unknown")
|
| 119 |
elif isinstance(raw, dict):
|
| 120 |
-
# Could be {persona_name: [items]} or {persona_name: {...}} etc.
|
| 121 |
for k, v in raw.items():
|
| 122 |
default_name = str(k)
|
| 123 |
if isinstance(v, list):
|
|
@@ -128,140 +113,70 @@ def flatten_entries(raw: Any) -> List[Dict[str, Any]]:
|
|
| 128 |
handle_item(v, default_name)
|
| 129 |
return out
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# Unique names for dropdown
|
| 135 |
-
def all_names(entries: List[Dict[str, Any]]) -> List[str]:
|
| 136 |
-
seen = []
|
| 137 |
-
for e in entries:
|
| 138 |
-
nm = e.get("name", "Unknown") or "Unknown"
|
| 139 |
-
if nm not in seen:
|
| 140 |
-
seen.append(nm)
|
| 141 |
-
return sorted(seen)
|
| 142 |
-
|
| 143 |
-
NAME_FILTERS = ["All"] + all_names(DATA)
|
| 144 |
-
TRAIT_FILTERS = ["All"] + HEXACO_ORDER
|
| 145 |
-
|
| 146 |
-
# ---------- Filtering & Navigation ----------
|
| 147 |
-
|
| 148 |
-
def get_filtered_indices(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str) -> List[int]:
|
| 149 |
-
idxs = list(range(len(entries)))
|
| 150 |
-
if name_filt != "All":
|
| 151 |
-
idxs = [i for i in idxs if entries[i].get("name") == name_filt]
|
| 152 |
-
if trait_filt != "All":
|
| 153 |
-
idxs = [i for i in idxs if entries[i].get("selected") == trait_filt]
|
| 154 |
-
return idxs
|
| 155 |
-
|
| 156 |
-
def clamp_index(i: int, n: int) -> int:
|
| 157 |
-
return 0 if n == 0 else (i % n)
|
| 158 |
-
|
| 159 |
-
# ---------- Summary ----------
|
| 160 |
|
| 161 |
-
def
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
for e in entries:
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
labels, props, counts, total = compute_summary(entries)
|
| 175 |
-
lines = ["## ๐ Summary (Name filter)", f"**Total:** {total}"]
|
| 176 |
-
for label, p in zip(labels, props):
|
| 177 |
-
lines.append(f"- {label}: {p:.2f}")
|
| 178 |
-
return "\n".join(lines)
|
| 179 |
-
|
| 180 |
-
# ---------- Rendering ----------
|
| 181 |
-
|
| 182 |
-
def md_question(entry: Dict[str, Any]) -> str:
|
| 183 |
-
q = entry.get("question", "")
|
| 184 |
-
name = entry.get("name", "โ")
|
| 185 |
-
return f"## {ICONS['question']} Question\n**Name:** {name}\n\n{q if q else 'โ'}"
|
| 186 |
-
|
| 187 |
-
def md_options(entry: Dict[str, Any]) -> str:
|
| 188 |
-
opts: Dict[str, str] = entry.get("options", {})
|
| 189 |
-
selected = entry.get("selected")
|
| 190 |
-
lines = []
|
| 191 |
-
for i, trait in enumerate(HEXACO_ORDER, start=1):
|
| 192 |
-
if trait not in opts:
|
| 193 |
-
continue
|
| 194 |
-
label = TRAIT_LABELS[trait]
|
| 195 |
-
text = opts[trait]
|
| 196 |
-
if trait == selected:
|
| 197 |
-
# underline + highlight both the label and the text
|
| 198 |
-
line = (
|
| 199 |
-
f"{i}. <u><mark><strong>{label}</strong>:</mark></u> "
|
| 200 |
-
f"<u><mark>{text}</mark></u>"
|
| 201 |
-
)
|
| 202 |
-
else:
|
| 203 |
-
line = f"{i}. **{label}:** {text}"
|
| 204 |
-
lines.append(line)
|
| 205 |
-
body = "\n\n".join(lines) if lines else "โ"
|
| 206 |
-
return f"## {ICONS['options']} Options (HEXACO order)\n{body}"
|
| 207 |
-
|
| 208 |
-
def md_metadata(entry: Dict[str, Any], idx: int, total_in_filter: int) -> str:
|
| 209 |
-
sel = entry.get("selected", "โ")
|
| 210 |
-
sel_disp = TRAIT_LABELS.get(sel, sel)
|
| 211 |
-
nm = entry.get("name", "โ")
|
| 212 |
-
return (
|
| 213 |
-
f"## {ICONS['metadata']} Metadata\n"
|
| 214 |
-
f"**Name:** {nm} \n"
|
| 215 |
-
f"**Selected Option (Trait):** {sel_disp} \n"
|
| 216 |
-
f"**Position in Filter:** {idx + 1} / {total_in_filter}"
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
def md_progress(idx: int, total: int) -> str:
|
| 220 |
-
return f"## {ICONS['progress']} Progress\n**{idx + 1} / {total}**"
|
| 221 |
-
|
| 222 |
-
def render(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str, pos: int):
|
| 223 |
-
# For summary, use "name-only" filter to show that persona's distribution
|
| 224 |
-
name_only_indices = [i for i, e in enumerate(entries) if (name_filt == "All" or e.get("name") == name_filt)]
|
| 225 |
-
name_only_slice = [entries[i] for i in name_only_indices]
|
| 226 |
-
|
| 227 |
-
# For the main view selection, apply both filters
|
| 228 |
-
indices = get_filtered_indices(entries, name_filt, trait_filt)
|
| 229 |
-
n = len(indices)
|
| 230 |
-
|
| 231 |
-
if n == 0:
|
| 232 |
-
return (
|
| 233 |
-
summary_plot(name_only_slice),
|
| 234 |
-
f"## {ICONS['question']} Question\n_No questions for filters **Name={name_filt}**, **Trait={trait_filt}**._",
|
| 235 |
-
f"## {ICONS['options']} Options\nโ",
|
| 236 |
-
f"## {ICONS['metadata']} Metadata\nโ",
|
| 237 |
-
f"## {ICONS['progress']} Progress\n0 / 0",
|
| 238 |
-
0, # expose pos back
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
pos = clamp_index(pos, n)
|
| 242 |
-
entry = entries[indices[pos]]
|
| 243 |
-
return (
|
| 244 |
-
summary_plot(name_only_slice),
|
| 245 |
-
md_question(entry),
|
| 246 |
-
md_options(entry),
|
| 247 |
-
md_metadata(entry, pos, n),
|
| 248 |
-
md_progress(pos, n),
|
| 249 |
-
pos, # expose pos back
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
# ---------- Gradio App ----------
|
| 253 |
|
| 254 |
-
with gr.Blocks(title="
|
| 255 |
-
gr.Markdown("#
|
| 256 |
-
gr.Markdown(
|
| 257 |
-
f"{ICONS['filters']} **Filters:** Choose a Name and a HEXACO Selected-Trait slice.\n\n"
|
| 258 |
-
f"{ICONS['summary']} **Summary:** Bar shows the trait-selection proportions under the current **Name** filter.\n\n"
|
| 259 |
-
"Options are consistently ordered by HEXACO. The actual selected option is underlined and highlighted."
|
| 260 |
-
)
|
| 261 |
|
| 262 |
with gr.Row():
|
| 263 |
-
|
| 264 |
-
|
| 265 |
st_pos = gr.State(0)
|
| 266 |
|
| 267 |
with gr.Row():
|
|
@@ -269,71 +184,40 @@ with gr.Blocks(title="SJT Answers Viewer") as demo:
|
|
| 269 |
next_btn = gr.Button("Next")
|
| 270 |
rand_btn = gr.Button("Random")
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
pos
|
| 295 |
-
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 296 |
-
|
| 297 |
-
def on_rand(name_filt: str, trait_filt: str, pos: int):
|
| 298 |
-
indices = get_filtered_indices(DATA, name_filt, trait_filt)
|
| 299 |
-
if not indices:
|
| 300 |
-
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 301 |
-
pos = random.randrange(len(indices))
|
| 302 |
-
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 308 |
-
)
|
| 309 |
-
trait_dd.change(
|
| 310 |
-
on_filters_change,
|
| 311 |
-
inputs=[name_dd, trait_dd],
|
| 312 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 313 |
-
)
|
| 314 |
|
| 315 |
-
prev_btn.click(
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 319 |
-
)
|
| 320 |
-
next_btn.click(
|
| 321 |
-
on_next,
|
| 322 |
-
inputs=[name_dd, trait_dd, st_pos],
|
| 323 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 324 |
-
)
|
| 325 |
-
rand_btn.click(
|
| 326 |
-
on_rand,
|
| 327 |
-
inputs=[name_dd, trait_dd, st_pos],
|
| 328 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 329 |
-
)
|
| 330 |
|
| 331 |
# initial load
|
| 332 |
-
demo.load(
|
| 333 |
-
lambda: [*render(DATA, "All", "All", 0), 0],
|
| 334 |
-
inputs=None,
|
| 335 |
-
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 336 |
-
)
|
| 337 |
|
| 338 |
if __name__ == "__main__":
|
| 339 |
demo.launch()
|
|
|
|
| 1 |
|
| 2 |
+
# sjt_compare_eleanor_hung.py
|
| 3 |
+
# Minimal Gradio app: show ONLY questions where Eleanor and Hung chose different options.
|
| 4 |
+
# - Loads case_study_answers.json
|
| 5 |
+
# - Compares two personas (default: "Eleanor" vs "Hung")
|
| 6 |
+
# - Displays the question and highlights Eleanor's choice in green, Hung's in red
|
| 7 |
+
# - Navigation: Previous / Next / Random
|
|
|
|
|
|
|
| 8 |
|
| 9 |
import json
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import List, Dict, Any, Optional, Tuple
|
| 12 |
import random
|
|
|
|
| 13 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
DATA_PATH = Path("case_study_answers.json")
|
| 16 |
|
| 17 |
+
# Canonical HEXACO order & labels
|
| 18 |
+
CANONICAL_ORDER = [
|
| 19 |
+
"honesty_humility",
|
| 20 |
"emotionality",
|
| 21 |
"extraversion",
|
| 22 |
"agreeableness",
|
| 23 |
"conscientiousness",
|
| 24 |
"openness",
|
| 25 |
]
|
|
|
|
| 26 |
TRAIT_LABELS = {
|
| 27 |
+
"honesty_humility": "HonestyโHumility",
|
| 28 |
"emotionality": "Emotionality",
|
| 29 |
"extraversion": "Extraversion",
|
| 30 |
"agreeableness": "Agreeableness",
|
|
|
|
| 32 |
"openness": "Openness",
|
| 33 |
}
|
| 34 |
|
| 35 |
+
ALIAS_TO_CANON = {
|
| 36 |
+
"hh": "honesty_humility",
|
| 37 |
+
"honesty_humility": "honesty_humility",
|
| 38 |
+
"honesty-humility": "honesty_humility",
|
| 39 |
+
"honestyhumility": "honesty_humility",
|
| 40 |
+
"honesty": "honesty_humility",
|
| 41 |
+
"emotionality": "emotionality",
|
| 42 |
+
"extraversion": "extraversion",
|
| 43 |
+
"agreeableness": "agreeableness",
|
| 44 |
+
"conscientiousness": "conscientiousness",
|
| 45 |
+
"openness": "openness",
|
| 46 |
}
|
| 47 |
|
| 48 |
+
def canonical_trait(x: Optional[str]) -> Optional[str]:
|
| 49 |
+
if x is None:
|
| 50 |
+
return None
|
| 51 |
+
s = str(x).strip().lower()
|
| 52 |
+
if s.endswith("_option"):
|
| 53 |
+
s = s[:-7]
|
| 54 |
+
s = s.replace("-", "_").replace(" ", "_")
|
| 55 |
+
return ALIAS_TO_CANON.get(s, s if s in CANONICAL_ORDER else None)
|
| 56 |
+
|
| 57 |
+
def get_option_text_from_blocks(block: Dict[str, Any], q: Dict[str, Any], canon: str) -> Optional[str]:
|
| 58 |
+
for key in (f"{canon}_option", f"hh_option" if canon == "honesty_humility" else None):
|
| 59 |
+
if key and isinstance(block, dict) and key in block:
|
| 60 |
+
return str(block[key]).strip()
|
| 61 |
+
if key and isinstance(q, dict) and key in q:
|
| 62 |
+
return str(q[key]).strip()
|
| 63 |
+
return None
|
| 64 |
|
| 65 |
def load_json(path: Path) -> Any:
|
| 66 |
if not path.exists():
|
|
|
|
| 69 |
return json.load(f)
|
| 70 |
|
| 71 |
def _safe_get_question_block(item: Dict[str, Any]) -> Tuple[str, Dict[str, str], Optional[str]]:
|
| 72 |
+
selected = canonical_trait(item.get("option"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
q = item.get("question", {}) or {}
|
| 74 |
block = q.get("corrected_sjt") or q.get("original_sjt") or {}
|
| 75 |
|
| 76 |
question_text = ""
|
| 77 |
options: Dict[str, str] = {}
|
|
|
|
| 78 |
if isinstance(block, dict):
|
| 79 |
question_text = block.get("question") or q.get("question") or ""
|
| 80 |
+
for c in CANONICAL_ORDER:
|
| 81 |
+
val = get_option_text_from_blocks(block, q, c)
|
| 82 |
+
if val:
|
| 83 |
+
options[c] = val
|
|
|
|
|
|
|
| 84 |
else:
|
|
|
|
| 85 |
question_text = str(block) if block else str(q.get("question", ""))
|
| 86 |
|
|
|
|
| 87 |
if not options and isinstance(q, dict):
|
| 88 |
+
for c in CANONICAL_ORDER:
|
| 89 |
+
val = get_option_text_from_blocks({}, q, c)
|
| 90 |
+
if val:
|
| 91 |
+
options[c] = val
|
|
|
|
| 92 |
return question_text.strip(), options, selected
|
| 93 |
|
| 94 |
def flatten_entries(raw: Any) -> List[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
out: List[Dict[str, Any]] = []
|
|
|
|
| 96 |
def handle_item(obj: Dict[str, Any], default_name: str):
|
| 97 |
q_text, opts, sel = _safe_get_question_block(obj)
|
|
|
|
| 98 |
nm = (obj.get("name") or default_name or "Unknown").strip() or "Unknown"
|
| 99 |
if q_text and opts and sel:
|
| 100 |
out.append({"name": nm, "question": q_text, "options": opts, "selected": sel})
|
|
|
|
| 101 |
if isinstance(raw, list):
|
| 102 |
for x in raw:
|
| 103 |
if isinstance(x, dict):
|
| 104 |
handle_item(x, "Unknown")
|
| 105 |
elif isinstance(raw, dict):
|
|
|
|
| 106 |
for k, v in raw.items():
|
| 107 |
default_name = str(k)
|
| 108 |
if isinstance(v, list):
|
|
|
|
| 113 |
handle_item(v, default_name)
|
| 114 |
return out
|
| 115 |
|
| 116 |
+
def normalize_name(s: str) -> str:
|
| 117 |
+
return " ".join((s or "").strip().lower().split())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
def build_mismatch_list(entries: List[Dict[str, Any]], name_a: str, name_b: str):
|
| 120 |
+
A = normalize_name(name_a)
|
| 121 |
+
B = normalize_name(name_b)
|
| 122 |
+
# index by normalized question text
|
| 123 |
+
qmap: Dict[str, Dict[str, Dict[str, Any]]] = {}
|
| 124 |
for e in entries:
|
| 125 |
+
q = " ".join(e["question"].split())
|
| 126 |
+
n = normalize_name(e["name"])
|
| 127 |
+
qmap.setdefault(q, {})[n] = e
|
| 128 |
+
|
| 129 |
+
mismatches = []
|
| 130 |
+
for q, per_name in qmap.items():
|
| 131 |
+
if A in per_name and B in per_name:
|
| 132 |
+
sel_a = per_name[A]["selected"]
|
| 133 |
+
sel_b = per_name[B]["selected"]
|
| 134 |
+
if sel_a != sel_b:
|
| 135 |
+
# prefer Eleanor's options, else Hung's
|
| 136 |
+
opts = per_name[A]["options"] or per_name[B]["options"]
|
| 137 |
+
mismatches.append({
|
| 138 |
+
"question": q,
|
| 139 |
+
"eleanor": per_name[A],
|
| 140 |
+
"hung": per_name[B],
|
| 141 |
+
"options": opts,
|
| 142 |
+
})
|
| 143 |
+
return mismatches
|
| 144 |
+
|
| 145 |
+
def make_display(item: Dict[str, Any], name_a_disp: str, name_b_disp: str) -> str:
|
| 146 |
+
q = item["question"]
|
| 147 |
+
sel_a = item["eleanor"]["selected"]
|
| 148 |
+
sel_b = item["hung"]["selected"]
|
| 149 |
+
opts = item["options"]
|
| 150 |
+
|
| 151 |
+
a_label = TRAIT_LABELS.get(sel_a, sel_a)
|
| 152 |
+
b_label = TRAIT_LABELS.get(sel_b, sel_b)
|
| 153 |
+
|
| 154 |
+
a_text = opts.get(sel_a, "")
|
| 155 |
+
b_text = opts.get(sel_b, "")
|
| 156 |
+
|
| 157 |
+
# styled spans
|
| 158 |
+
a_span = f"<span style='background:#e8ffe8;color:#0a6410;font-weight:700;'>{a_label}: {a_text}</span>"
|
| 159 |
+
b_span = f"<span style='background:#ffe8e8;color:#a00606;font-weight:700;'>{b_label}: {b_text}</span>"
|
| 160 |
+
|
| 161 |
+
body = [
|
| 162 |
+
f"### โ Question",
|
| 163 |
+
q,
|
| 164 |
+
"",
|
| 165 |
+
f"**{name_a_disp} chose:** {a_span}",
|
| 166 |
+
f"**{name_b_disp} chose:** {b_span}",
|
| 167 |
+
]
|
| 168 |
+
return "\n\n".join(body)
|
| 169 |
|
| 170 |
+
DATA_RAW = load_json(DATA_PATH)
|
| 171 |
+
DATA = flatten_entries(DATA_RAW)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
with gr.Blocks(title="Eleanor vs Hung โ Differences Only") as demo:
|
| 174 |
+
gr.Markdown("# Eleanor vs Hung โ Different Answers Only")
|
| 175 |
+
gr.Markdown("Shows only the questions where the two personas chose different options.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
with gr.Row():
|
| 178 |
+
name_a_in = gr.Textbox(value="Eleanor", label="Name A (green)", interactive=True)
|
| 179 |
+
name_b_in = gr.Textbox(value="Hung", label="Name B (red)", interactive=True)
|
| 180 |
st_pos = gr.State(0)
|
| 181 |
|
| 182 |
with gr.Row():
|
|
|
|
| 184 |
next_btn = gr.Button("Next")
|
| 185 |
rand_btn = gr.Button("Random")
|
| 186 |
|
| 187 |
+
status_md = gr.Markdown()
|
| 188 |
+
diff_md = gr.Markdown()
|
| 189 |
+
|
| 190 |
+
def recompute(name_a: str, name_b: str):
|
| 191 |
+
mismatches = build_mismatch_list(DATA, name_a, name_b)
|
| 192 |
+
total = len(mismatches)
|
| 193 |
+
if total == 0:
|
| 194 |
+
return 0, f"**0 differences** found for *{name_a}* vs *{name_b}*.", "_No differences to show._"
|
| 195 |
+
# show first
|
| 196 |
+
md = make_display(mismatches[0], name_a, name_b)
|
| 197 |
+
return 0, f"**{total} differences** found for *{name_a}* vs *{name_b}*.", md
|
| 198 |
+
|
| 199 |
+
def nav(name_a: str, name_b: str, pos: int, step: int = 0, rand: bool = False):
|
| 200 |
+
mismatches = build_mismatch_list(DATA, name_a, name_b)
|
| 201 |
+
total = len(mismatches)
|
| 202 |
+
if total == 0:
|
| 203 |
+
return pos, f"**0 differences** found for *{name_a}* vs *{name_b}*.", "_No differences to show._"
|
| 204 |
+
if rand:
|
| 205 |
+
pos = random.randrange(total)
|
| 206 |
+
else:
|
| 207 |
+
pos = (pos + step) % total
|
| 208 |
+
md = make_display(mismatches[pos], name_a, name_b)
|
| 209 |
+
return pos, f"**{total} differences** found โข Showing {pos+1} / {total}", md
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
# Trigger recompute when names change
|
| 212 |
+
name_a_in.change(lambda a, b: recompute(a, b), inputs=[name_a_in, name_b_in], outputs=[st_pos, status_md, diff_md])
|
| 213 |
+
name_b_in.change(lambda a, b: recompute(a, b), inputs=[name_a_in, name_b_in], outputs=[st_pos, status_md, diff_md])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
prev_btn.click(lambda a, b, p: nav(a, b, p, step=-1), inputs=[name_a_in, name_b_in, st_pos], outputs=[st_pos, status_md, diff_md])
|
| 216 |
+
next_btn.click(lambda a, b, p: nav(a, b, p, step=+1), inputs=[name_a_in, name_b_in, st_pos], outputs=[st_pos, status_md, diff_md])
|
| 217 |
+
rand_btn.click(lambda a, b, p: nav(a, b, p, rand=True), inputs=[name_a_in, name_b_in, st_pos], outputs=[st_pos, status_md, diff_md])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
# initial load
|
| 220 |
+
demo.load(lambda: recompute("Eleanor", "Hung"), inputs=None, outputs=[st_pos, status_md, diff_md])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
if __name__ == "__main__":
|
| 223 |
demo.launch()
|
backup_app.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# sjt_answers_viewer.py
|
| 3 |
+
# Gradio viewer for case_study_answers.json
|
| 4 |
+
# - Shows one question at a time
|
| 5 |
+
# - Dropdown 1: filter by **Name**
|
| 6 |
+
# - Dropdown 2: filter by **Selected Trait** (HEXACO slice)
|
| 7 |
+
# - Underlines & highlights the actually selected option + trait name
|
| 8 |
+
# - Always orders options consistently (HEXACO)
|
| 9 |
+
# - Top "Summary" bar shows proportion of selections by trait (under current Name filter)
|
| 10 |
+
|
| 11 |
+
import json
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 14 |
+
import random
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
|
| 19 |
+
# ---------- Constants ----------
|
| 20 |
+
|
| 21 |
+
DATA_PATH = Path("case_study_answers.json")
|
| 22 |
+
|
| 23 |
+
HEXACO_ORDER = [
|
| 24 |
+
"hh",
|
| 25 |
+
"emotionality",
|
| 26 |
+
"extraversion",
|
| 27 |
+
"agreeableness",
|
| 28 |
+
"conscientiousness",
|
| 29 |
+
"openness",
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
TRAIT_LABELS = {
|
| 33 |
+
"hh": "HonestyโHumility",
|
| 34 |
+
"emotionality": "Emotionality",
|
| 35 |
+
"extraversion": "Extraversion",
|
| 36 |
+
"agreeableness": "Agreeableness",
|
| 37 |
+
"conscientiousness": "Conscientiousness",
|
| 38 |
+
"openness": "Openness",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# ---------- Icons ----------
|
| 42 |
+
|
| 43 |
+
ICONS = {
|
| 44 |
+
"header": "๐",
|
| 45 |
+
"question": "โ",
|
| 46 |
+
"options": "โ
",
|
| 47 |
+
"summary": "๐",
|
| 48 |
+
"progress": "โญ๏ธ",
|
| 49 |
+
"metadata": "๐",
|
| 50 |
+
"filters": "๐๏ธ",
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# ---------- Data Loading & Normalization ----------
|
| 54 |
+
|
| 55 |
+
def load_json(path: Path) -> Any:
|
| 56 |
+
if not path.exists():
|
| 57 |
+
return []
|
| 58 |
+
with path.open("r", encoding="utf-8") as f:
|
| 59 |
+
return json.load(f)
|
| 60 |
+
|
| 61 |
+
def _safe_get_question_block(item: Dict[str, Any]) -> Tuple[str, Dict[str, str], Optional[str]]:
|
| 62 |
+
"""
|
| 63 |
+
Extract (question_text, options_map, selected_trait) from a raw item.
|
| 64 |
+
Heuristics:
|
| 65 |
+
- Selected trait is at top-level key 'option'.
|
| 66 |
+
- Question text/options may be under item['question'] with nested 'corrected_sjt' or 'original_sjt'.
|
| 67 |
+
- Options are expected as keys like '<trait>_option' where trait โ HEXACO_ORDER.
|
| 68 |
+
"""
|
| 69 |
+
selected = item.get("option")
|
| 70 |
+
|
| 71 |
+
q = item.get("question", {}) or {}
|
| 72 |
+
block = q.get("corrected_sjt") or q.get("original_sjt") or {}
|
| 73 |
+
|
| 74 |
+
question_text = ""
|
| 75 |
+
options: Dict[str, str] = {}
|
| 76 |
+
|
| 77 |
+
if isinstance(block, dict):
|
| 78 |
+
question_text = block.get("question") or q.get("question") or ""
|
| 79 |
+
for trait in HEXACO_ORDER:
|
| 80 |
+
k = f"{trait}_option"
|
| 81 |
+
if k in block:
|
| 82 |
+
options[trait] = str(block[k]).strip()
|
| 83 |
+
elif k in q:
|
| 84 |
+
options[trait] = str(q[k]).strip()
|
| 85 |
+
else:
|
| 86 |
+
# sometimes block is a plain string
|
| 87 |
+
question_text = str(block) if block else str(q.get("question", ""))
|
| 88 |
+
|
| 89 |
+
# Fallback: look for options directly on item if missing
|
| 90 |
+
if not options and isinstance(q, dict):
|
| 91 |
+
for trait in HEXACO_ORDER:
|
| 92 |
+
k = f"{trait}_option"
|
| 93 |
+
if k in q:
|
| 94 |
+
options[trait] = str(q[k]).strip()
|
| 95 |
+
|
| 96 |
+
return question_text.strip(), options, selected
|
| 97 |
+
|
| 98 |
+
def flatten_entries(raw: Any) -> List[Dict[str, Any]]:
|
| 99 |
+
"""
|
| 100 |
+
Returns a list of entries with keys:
|
| 101 |
+
- name (str)
|
| 102 |
+
- question (str)
|
| 103 |
+
- options (dict[trait->text])
|
| 104 |
+
- selected (trait str)
|
| 105 |
+
"""
|
| 106 |
+
out: List[Dict[str, Any]] = []
|
| 107 |
+
|
| 108 |
+
def handle_item(obj: Dict[str, Any], default_name: str):
|
| 109 |
+
q_text, opts, sel = _safe_get_question_block(obj)
|
| 110 |
+
# Prefer name from object if present; else inherit from container
|
| 111 |
+
nm = (obj.get("name") or default_name or "Unknown").strip() or "Unknown"
|
| 112 |
+
if q_text and opts and sel:
|
| 113 |
+
out.append({"name": nm, "question": q_text, "options": opts, "selected": sel})
|
| 114 |
+
|
| 115 |
+
if isinstance(raw, list):
|
| 116 |
+
for x in raw:
|
| 117 |
+
if isinstance(x, dict):
|
| 118 |
+
handle_item(x, "Unknown")
|
| 119 |
+
elif isinstance(raw, dict):
|
| 120 |
+
# Could be {persona_name: [items]} or {persona_name: {...}} etc.
|
| 121 |
+
for k, v in raw.items():
|
| 122 |
+
default_name = str(k)
|
| 123 |
+
if isinstance(v, list):
|
| 124 |
+
for x in v:
|
| 125 |
+
if isinstance(x, dict):
|
| 126 |
+
handle_item(x, default_name)
|
| 127 |
+
elif isinstance(v, dict):
|
| 128 |
+
handle_item(v, default_name)
|
| 129 |
+
return out
|
| 130 |
+
|
| 131 |
+
DATA_RAW = load_json(DATA_PATH)
|
| 132 |
+
DATA: List[Dict[str, Any]] = flatten_entries(DATA_RAW)
|
| 133 |
+
|
| 134 |
+
# Unique names for dropdown
|
| 135 |
+
def all_names(entries: List[Dict[str, Any]]) -> List[str]:
|
| 136 |
+
seen = []
|
| 137 |
+
for e in entries:
|
| 138 |
+
nm = e.get("name", "Unknown") or "Unknown"
|
| 139 |
+
if nm not in seen:
|
| 140 |
+
seen.append(nm)
|
| 141 |
+
return sorted(seen)
|
| 142 |
+
|
| 143 |
+
NAME_FILTERS = ["All"] + all_names(DATA)
|
| 144 |
+
TRAIT_FILTERS = ["All"] + HEXACO_ORDER
|
| 145 |
+
|
| 146 |
+
# ---------- Filtering & Navigation ----------
|
| 147 |
+
|
| 148 |
+
def get_filtered_indices(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str) -> List[int]:
|
| 149 |
+
idxs = list(range(len(entries)))
|
| 150 |
+
if name_filt != "All":
|
| 151 |
+
idxs = [i for i in idxs if entries[i].get("name") == name_filt]
|
| 152 |
+
if trait_filt != "All":
|
| 153 |
+
idxs = [i for i in idxs if entries[i].get("selected") == trait_filt]
|
| 154 |
+
return idxs
|
| 155 |
+
|
| 156 |
+
def clamp_index(i: int, n: int) -> int:
|
| 157 |
+
return 0 if n == 0 else (i % n)
|
| 158 |
+
|
| 159 |
+
# ---------- Summary ----------
|
| 160 |
+
|
| 161 |
+
def compute_summary(entries: List[Dict[str, Any]]):
|
| 162 |
+
total = len(entries)
|
| 163 |
+
counts = {t: 0 for t in HEXACO_ORDER}
|
| 164 |
+
for e in entries:
|
| 165 |
+
sel = e.get("selected")
|
| 166 |
+
if sel in counts:
|
| 167 |
+
counts[sel] += 1
|
| 168 |
+
labels = [TRAIT_LABELS[t] for t in HEXACO_ORDER]
|
| 169 |
+
props = [counts[t] / total if total else 0.0 for t in HEXACO_ORDER]
|
| 170 |
+
return labels, props, counts, total
|
| 171 |
+
|
| 172 |
+
def summary_plot(entries: List[Dict[str, Any]]):
|
| 173 |
+
# Returns Markdown with proportions per trait under the current Name filter
|
| 174 |
+
labels, props, counts, total = compute_summary(entries)
|
| 175 |
+
lines = ["## ๐ Summary (Name filter)", f"**Total:** {total}"]
|
| 176 |
+
for label, p in zip(labels, props):
|
| 177 |
+
lines.append(f"- {label}: {p:.2f}")
|
| 178 |
+
return "\n".join(lines)
|
| 179 |
+
|
| 180 |
+
# ---------- Rendering ----------
|
| 181 |
+
|
| 182 |
+
def md_question(entry: Dict[str, Any]) -> str:
|
| 183 |
+
q = entry.get("question", "")
|
| 184 |
+
name = entry.get("name", "โ")
|
| 185 |
+
return f"## {ICONS['question']} Question\n**Name:** {name}\n\n{q if q else 'โ'}"
|
| 186 |
+
|
| 187 |
+
def md_options(entry: Dict[str, Any]) -> str:
|
| 188 |
+
opts: Dict[str, str] = entry.get("options", {})
|
| 189 |
+
selected = entry.get("selected")
|
| 190 |
+
lines = []
|
| 191 |
+
for i, trait in enumerate(HEXACO_ORDER, start=1):
|
| 192 |
+
if trait not in opts:
|
| 193 |
+
continue
|
| 194 |
+
label = TRAIT_LABELS[trait]
|
| 195 |
+
text = opts[trait]
|
| 196 |
+
if trait == selected:
|
| 197 |
+
# underline + highlight both the label and the text
|
| 198 |
+
line = (
|
| 199 |
+
f"{i}. <u><mark><strong>{label}</strong>:</mark></u> "
|
| 200 |
+
f"<u><mark>{text}</mark></u>"
|
| 201 |
+
)
|
| 202 |
+
else:
|
| 203 |
+
line = f"{i}. **{label}:** {text}"
|
| 204 |
+
lines.append(line)
|
| 205 |
+
body = "\n\n".join(lines) if lines else "โ"
|
| 206 |
+
return f"## {ICONS['options']} Options (HEXACO order)\n{body}"
|
| 207 |
+
|
| 208 |
+
def md_metadata(entry: Dict[str, Any], idx: int, total_in_filter: int) -> str:
|
| 209 |
+
sel = entry.get("selected", "โ")
|
| 210 |
+
sel_disp = TRAIT_LABELS.get(sel, sel)
|
| 211 |
+
nm = entry.get("name", "โ")
|
| 212 |
+
return (
|
| 213 |
+
f"## {ICONS['metadata']} Metadata\n"
|
| 214 |
+
f"**Name:** {nm} \n"
|
| 215 |
+
f"**Selected Option (Trait):** {sel_disp} \n"
|
| 216 |
+
f"**Position in Filter:** {idx + 1} / {total_in_filter}"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
def md_progress(idx: int, total: int) -> str:
|
| 220 |
+
return f"## {ICONS['progress']} Progress\n**{idx + 1} / {total}**"
|
| 221 |
+
|
| 222 |
+
def render(entries: List[Dict[str, Any]], name_filt: str, trait_filt: str, pos: int):
|
| 223 |
+
# For summary, use "name-only" filter to show that persona's distribution
|
| 224 |
+
name_only_indices = [i for i, e in enumerate(entries) if (name_filt == "All" or e.get("name") == name_filt)]
|
| 225 |
+
name_only_slice = [entries[i] for i in name_only_indices]
|
| 226 |
+
|
| 227 |
+
# For the main view selection, apply both filters
|
| 228 |
+
indices = get_filtered_indices(entries, name_filt, trait_filt)
|
| 229 |
+
n = len(indices)
|
| 230 |
+
|
| 231 |
+
if n == 0:
|
| 232 |
+
return (
|
| 233 |
+
summary_plot(name_only_slice),
|
| 234 |
+
f"## {ICONS['question']} Question\n_No questions for filters **Name={name_filt}**, **Trait={trait_filt}**._",
|
| 235 |
+
f"## {ICONS['options']} Options\nโ",
|
| 236 |
+
f"## {ICONS['metadata']} Metadata\nโ",
|
| 237 |
+
f"## {ICONS['progress']} Progress\n0 / 0",
|
| 238 |
+
0, # expose pos back
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
pos = clamp_index(pos, n)
|
| 242 |
+
entry = entries[indices[pos]]
|
| 243 |
+
return (
|
| 244 |
+
summary_plot(name_only_slice),
|
| 245 |
+
md_question(entry),
|
| 246 |
+
md_options(entry),
|
| 247 |
+
md_metadata(entry, pos, n),
|
| 248 |
+
md_progress(pos, n),
|
| 249 |
+
pos, # expose pos back
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# ---------- Gradio App ----------
|
| 253 |
+
|
| 254 |
+
with gr.Blocks(title="SJT Answers Viewer") as demo:
|
| 255 |
+
gr.Markdown("# SJT Answers Viewer")
|
| 256 |
+
gr.Markdown(
|
| 257 |
+
f"{ICONS['filters']} **Filters:** Choose a Name and a HEXACO Selected-Trait slice.\n\n"
|
| 258 |
+
f"{ICONS['summary']} **Summary:** Bar shows the trait-selection proportions under the current **Name** filter.\n\n"
|
| 259 |
+
"Options are consistently ordered by HEXACO. The actual selected option is underlined and highlighted."
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
with gr.Row():
|
| 263 |
+
name_dd = gr.Dropdown(choices=NAME_FILTERS, value="All", label="Filter by Name", interactive=True)
|
| 264 |
+
trait_dd = gr.Dropdown(choices=TRAIT_FILTERS, value="All", label="Filter by Selected Trait", interactive=True)
|
| 265 |
+
st_pos = gr.State(0)
|
| 266 |
+
|
| 267 |
+
with gr.Row():
|
| 268 |
+
prev_btn = gr.Button("Previous")
|
| 269 |
+
next_btn = gr.Button("Next")
|
| 270 |
+
rand_btn = gr.Button("Random")
|
| 271 |
+
|
| 272 |
+
# Outputs
|
| 273 |
+
summary_out = gr.Markdown(label="Selections Summary (Name filter)")
|
| 274 |
+
question_out = gr.Markdown()
|
| 275 |
+
options_out = gr.Markdown()
|
| 276 |
+
metadata_out = gr.Markdown()
|
| 277 |
+
progress_out = gr.Markdown()
|
| 278 |
+
|
| 279 |
+
# ----- Callbacks -----
|
| 280 |
+
def on_filters_change(name_filt: str, trait_filt: str):
|
| 281 |
+
return [*render(DATA, name_filt, trait_filt, 0), 0]
|
| 282 |
+
|
| 283 |
+
def on_prev(name_filt: str, trait_filt: str, pos: int):
|
| 284 |
+
indices = get_filtered_indices(DATA, name_filt, trait_filt)
|
| 285 |
+
if not indices:
|
| 286 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 287 |
+
pos = clamp_index(pos - 1, len(indices))
|
| 288 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 289 |
+
|
| 290 |
+
def on_next(name_filt: str, trait_filt: str, pos: int):
|
| 291 |
+
indices = get_filtered_indices(DATA, name_filt, trait_filt)
|
| 292 |
+
if not indices:
|
| 293 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 294 |
+
pos = clamp_index(pos + 1, len(indices))
|
| 295 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 296 |
+
|
| 297 |
+
def on_rand(name_filt: str, trait_filt: str, pos: int):
|
| 298 |
+
indices = get_filtered_indices(DATA, name_filt, trait_filt)
|
| 299 |
+
if not indices:
|
| 300 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 301 |
+
pos = random.randrange(len(indices))
|
| 302 |
+
return [*render(DATA, name_filt, trait_filt, pos), pos]
|
| 303 |
+
|
| 304 |
+
name_dd.change(
|
| 305 |
+
on_filters_change,
|
| 306 |
+
inputs=[name_dd, trait_dd],
|
| 307 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 308 |
+
)
|
| 309 |
+
trait_dd.change(
|
| 310 |
+
on_filters_change,
|
| 311 |
+
inputs=[name_dd, trait_dd],
|
| 312 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
prev_btn.click(
|
| 316 |
+
on_prev,
|
| 317 |
+
inputs=[name_dd, trait_dd, st_pos],
|
| 318 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 319 |
+
)
|
| 320 |
+
next_btn.click(
|
| 321 |
+
on_next,
|
| 322 |
+
inputs=[name_dd, trait_dd, st_pos],
|
| 323 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 324 |
+
)
|
| 325 |
+
rand_btn.click(
|
| 326 |
+
on_rand,
|
| 327 |
+
inputs=[name_dd, trait_dd, st_pos],
|
| 328 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# initial load
|
| 332 |
+
demo.load(
|
| 333 |
+
lambda: [*render(DATA, "All", "All", 0), 0],
|
| 334 |
+
inputs=None,
|
| 335 |
+
outputs=[summary_out, question_out, options_out, metadata_out, progress_out, st_pos, st_pos],
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
if __name__ == "__main__":
|
| 339 |
+
demo.launch()
|