Spaces:
Sleeping
Sleeping
File size: 32,058 Bytes
1f69c1b 4e68118 816932f d4b6ccd 121f516 7f368dd d4b6ccd 40d9d9b 7f368dd 4e68118 7f368dd 4e68118 4e366fc 4e68118 4e366fc 4e68118 4e366fc 4e68118 4e366fc 7f368dd 4e68118 4e366fc 4e68118 7f368dd 4e68118 7f368dd 4e68118 7f368dd 4e68118 4e366fc 4e68118 4e366fc 4e68118 e640a8d 816932f 4e366fc 816932f e640a8d 816932f e640a8d 816932f e640a8d 7f368dd 4e366fc d4b6ccd 4e366fc d4b6ccd e640a8d 816932f 4e366fc 87ef6d0 4e366fc 87ef6d0 816932f e640a8d 816932f e640a8d dc6d149 9a3a243 99908d8 e640a8d 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 4e68118 e640a8d 4e366fc e640a8d 816932f 4e68118 e640a8d 7f368dd 816932f 4e68118 e484dcb 4e68118 e640a8d 816932f e484dcb 7f368dd e640a8d 4e68118 e640a8d 7f368dd e640a8d 7f368dd e640a8d 121f516 4e366fc 121f516 816932f 4e68118 a162e4d 4e366fc d4b6ccd 40d9d9b 7f368dd 99908d8 d4b6ccd 121f516 e484dcb 7f368dd e484dcb 4e366fc 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 7f368dd 99908d8 4e68118 121f516 40d9d9b 236c93b 40d9d9b 4e68118 40d9d9b d4b6ccd 7f368dd 40d9d9b e484dcb 40d9d9b d4b6ccd e484dcb d4b6ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
import keras
import numpy as np
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import json
from abc import ABC, abstractmethod
import time
import threading
import hashlib
import sqlite3
from datetime import datetime, timedelta
import pytz
# ==============================================================================
# Performance Optimizations for CPU
# ==============================================================================
tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(2)
tf.config.optimizer.set_jit(True)
tf.config.run_functions_eagerly(False)
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
# Australian timezone
AUSTRALIA_TZ = pytz.timezone('Australia/Sydney')
# ==============================================================================
# Database Setup
# ==============================================================================
def init_database():
"""Initialize SQLite database for users and subscriptions."""
conn = sqlite3.connect('sam_users.db', check_same_thread=False)
c = conn.cursor()
# Users table
c.execute('''CREATE TABLE IF NOT EXISTS users
(id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL,
email TEXT,
plan TEXT DEFAULT 'free',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
is_admin BOOLEAN DEFAULT 0,
rate_limit_start TIMESTAMP,
messages_used_nano INTEGER DEFAULT 0,
messages_used_mini INTEGER DEFAULT 0,
messages_used_fast INTEGER DEFAULT 0,
messages_used_large INTEGER DEFAULT 0)''')
# Upgrade requests table
c.execute('''CREATE TABLE IF NOT EXISTS upgrade_requests
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
requested_plan TEXT,
reason TEXT,
status TEXT DEFAULT 'pending',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(id))''')
# Usage tracking
c.execute('''CREATE TABLE IF NOT EXISTS usage_logs
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
tokens_used INTEGER,
model_used TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(id))''')
# Create admin account if not exists
admin_pass = hashlib.sha256("admin123".encode()).hexdigest()
try:
c.execute("INSERT INTO users (username, password_hash, email, plan, is_admin) VALUES (?, ?, ?, ?, ?)",
("admin", admin_pass, "[email protected]", "pro", 1))
conn.commit()
print("✅ Admin account created (username: admin, password: admin123)")
except sqlite3.IntegrityError:
print("✅ Admin account already exists")
conn.commit()
return conn
# Global database connection
db_conn = init_database()
db_lock = threading.Lock()
# Plan limits with 3-hour rolling window
PLAN_LIMITS = {
'free': {
'nano_messages': -1,
'mini_messages': -1,
'fast_messages': 10,
'large_messages': 8,
'can_choose_model': False,
'max_tokens': 256,
'reset_hours': 3
},
'plus': {
'nano_messages': -1,
'mini_messages': -1,
'fast_messages': -1,
'large_messages': 20,
'can_choose_model': True,
'max_tokens': 384,
'reset_hours': 3
},
'pro': {
'nano_messages': -1,
'mini_messages': -1,
'fast_messages': -1,
'large_messages': -1,
'can_choose_model': True,
'max_tokens': 512,
'reset_hours': 3
}
}
def get_model_type(model_name):
"""Get model type from model name."""
if 'Nano' in model_name:
return 'nano'
elif 'Mini' in model_name:
return 'mini'
elif 'Fast' in model_name:
return 'fast'
elif 'Large' in model_name:
return 'large'
return 'nano'
# ==============================================================================
# User Management Functions
# ==============================================================================
def hash_password(password):
return hashlib.sha256(password.encode()).hexdigest()
def create_user(username, password, email=""):
with db_lock:
try:
c = db_conn.cursor()
now = datetime.now(AUSTRALIA_TZ).isoformat()
c.execute("INSERT INTO users (username, password_hash, email, rate_limit_start) VALUES (?, ?, ?, ?)",
(username, hash_password(password), email, now))
db_conn.commit()
return True, "Account created successfully!"
except sqlite3.IntegrityError:
return False, "Username already exists!"
def authenticate_user(username, password):
with db_lock:
c = db_conn.cursor()
c.execute("SELECT id, password_hash, plan, is_admin FROM users WHERE username = ?", (username,))
result = c.fetchone()
if result and result[1] == hash_password(password):
return True, {"id": result[0], "username": username, "plan": result[2], "is_admin": bool(result[3])}
return False, None
def check_and_reset_limits(user_id):
"""Check if 3-hour window has passed and reset limits if needed."""
with db_lock:
c = db_conn.cursor()
c.execute("SELECT rate_limit_start, plan FROM users WHERE id = ?", (user_id,))
result = c.fetchone()
if not result:
return
rate_limit_start_str, plan = result
reset_hours = PLAN_LIMITS[plan]['reset_hours']
if rate_limit_start_str:
rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
now = datetime.now(AUSTRALIA_TZ)
if now - rate_limit_start >= timedelta(hours=reset_hours):
new_start = now.isoformat()
c.execute("""UPDATE users
SET rate_limit_start = ?,
messages_used_nano = 0,
messages_used_mini = 0,
messages_used_fast = 0,
messages_used_large = 0
WHERE id = ?""", (new_start, user_id))
db_conn.commit()
def get_user_limits_info(user_id):
"""Get user's current usage and limits with reset time."""
check_and_reset_limits(user_id)
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT plan, rate_limit_start,
messages_used_nano, messages_used_mini,
messages_used_fast, messages_used_large
FROM users WHERE id = ?""", (user_id,))
result = c.fetchone()
if not result:
return None
plan, rate_limit_start_str, nano_used, mini_used, fast_used, large_used = result
limits = PLAN_LIMITS[plan]
if rate_limit_start_str:
rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
reset_time = rate_limit_start + timedelta(hours=limits['reset_hours'])
now = datetime.now(AUSTRALIA_TZ)
time_until_reset = reset_time - now
hours, remainder = divmod(int(time_until_reset.total_seconds()), 3600)
minutes, seconds = divmod(remainder, 60)
reset_str = f"{hours}h {minutes}m"
else:
reset_str = "N/A"
return {
'plan': plan,
'nano_used': nano_used,
'mini_used': mini_used,
'fast_used': fast_used,
'large_used': large_used,
'nano_limit': limits['nano_messages'],
'mini_limit': limits['mini_messages'],
'fast_limit': limits['fast_messages'],
'large_limit': limits['large_messages'],
'can_choose_model': limits['can_choose_model'],
'max_tokens': limits['max_tokens'],
'reset_in': reset_str
}
def can_use_model(user_id, model_name):
"""Check if user can use a specific model."""
info = get_user_limits_info(user_id)
if not info:
return False, "User not found"
model_type = get_model_type(model_name)
used_key = f"{model_type}_used"
limit_key = f"{model_type}_limit"
used = info[used_key]
limit = info[limit_key]
if limit == -1:
return True, "OK"
if used >= limit:
return False, f"Limit reached for {model_type.upper()} model ({used}/{limit}). Resets in {info['reset_in']}"
return True, "OK"
def increment_model_usage(user_id, model_name):
"""Increment usage counter for a model."""
model_type = get_model_type(model_name)
column = f"messages_used_{model_type}"
with db_lock:
c = db_conn.cursor()
c.execute(f"UPDATE users SET {column} = {column} + 1 WHERE id = ?", (user_id,))
db_conn.commit()
def get_available_models_for_user(user_id):
"""Get list of models user can currently use."""
info = get_user_limits_info(user_id)
if not info:
return []
available = []
for model_type in ['nano', 'mini', 'fast', 'large']:
used = info[f'{model_type}_used']
limit = info[f'{model_type}_limit']
if limit == -1 or used < limit:
for model_name in available_models.keys():
if get_model_type(model_name) == model_type:
available.append(model_name)
break
return available
def log_usage(user_id, tokens, model):
with db_lock:
c = db_conn.cursor()
c.execute("INSERT INTO usage_logs (user_id, tokens_used, model_used) VALUES (?, ?, ?)",
(user_id, tokens, model))
db_conn.commit()
def request_upgrade(user_id, plan, reason):
with db_lock:
try:
c = db_conn.cursor()
c.execute("INSERT INTO upgrade_requests (user_id, requested_plan, reason) VALUES (?, ?, ?)",
(user_id, plan, reason))
db_conn.commit()
return True, "Upgrade request submitted! Admin will review soon."
except Exception as e:
return False, f"Error: {str(e)}"
def get_all_users():
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT id, username, email, plan, created_at, is_admin,
messages_used_nano, messages_used_mini,
messages_used_fast, messages_used_large,
rate_limit_start
FROM users ORDER BY created_at DESC""")
return c.fetchall()
def get_pending_requests():
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT r.id, u.username, r.requested_plan, r.reason, r.created_at
FROM upgrade_requests r
JOIN users u ON r.user_id = u.id
WHERE r.status = 'pending'
ORDER BY r.created_at DESC""")
return c.fetchall()
def update_user_plan(username, new_plan):
with db_lock:
try:
c = db_conn.cursor()
now = datetime.now(AUSTRALIA_TZ).isoformat()
c.execute("""UPDATE users
SET plan = ?,
rate_limit_start = ?,
messages_used_nano = 0,
messages_used_mini = 0,
messages_used_fast = 0,
messages_used_large = 0
WHERE username = ?""", (new_plan, now, username))
db_conn.commit()
return True, f"User {username} upgraded to {new_plan}!"
except Exception as e:
return False, f"Error: {str(e)}"
def approve_request(request_id):
with db_lock:
try:
c = db_conn.cursor()
c.execute("SELECT user_id, requested_plan FROM upgrade_requests WHERE id = ?", (request_id,))
result = c.fetchone()
if result:
user_id, plan = result
now = datetime.now(AUSTRALIA_TZ).isoformat()
c.execute("""UPDATE users
SET plan = ?,
rate_limit_start = ?,
messages_used_nano = 0,
messages_used_mini = 0,
messages_used_fast = 0,
messages_used_large = 0
WHERE id = ?""", (plan, now, user_id))
c.execute("UPDATE upgrade_requests SET status = 'approved' WHERE id = ?", (request_id,))
db_conn.commit()
return True, "Request approved!"
return False, "Request not found"
except Exception as e:
return False, f"Error: {str(e)}"
def deny_request(request_id):
with db_lock:
try:
c = db_conn.cursor()
c.execute("UPDATE upgrade_requests SET status = 'denied' WHERE id = ?", (request_id,))
db_conn.commit()
return True, "Request denied"
except Exception as e:
return False, f"Error: {str(e)}"
# ==============================================================================
# Model Architecture
# ==============================================================================
@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.max_len = max_len
self.theta = theta
self.built_cache = False
def build(self, input_shape):
if not self.built_cache:
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
t = tf.range(self.max_len, dtype=tf.float32)
freqs = tf.einsum("i,j->ij", t, inv_freq)
emb = tf.concat([freqs, freqs], axis=-1)
self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
self.built_cache = True
super().build(input_shape)
def rotate_half(self, x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat([-x2, x1], axis=-1)
def call(self, q, k):
seq_len = tf.shape(q)[2]
dtype = q.dtype
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
return q_rotated, k_rotated
def get_config(self):
config = super().get_config()
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
return config
@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
def __init__(self, epsilon=1e-5, **kwargs):
super().__init__(**kwargs)
self.epsilon = epsilon
def build(self, input_shape):
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
def call(self, x):
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
def get_config(self):
config = super().get_config()
config.update({"epsilon": self.epsilon})
return config
@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.n_heads = n_heads
self.ff_dim = ff_dim
self.dropout_rate = dropout
self.max_len = max_len
self.rope_theta = rope_theta
self.head_dim = d_model // n_heads
self.layer_idx = layer_idx
self.pre_attn_norm = RMSNorm()
self.pre_ffn_norm = RMSNorm()
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
self.dropout = keras.layers.Dropout(dropout)
def call(self, x, training=None):
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
dtype = x.dtype
res = x
y = self.pre_attn_norm(x)
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
q, k = self.rope(q, k)
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
mask = tf.where(tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0, tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
scores += mask
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
x = res + self.dropout(self.out_proj(attn), training=training)
res = x
y = self.pre_ffn_norm(x)
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
return res + self.dropout(ffn, training=training)
def get_config(self):
config = super().get_config()
config.update({"d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim, "dropout": self.dropout_rate, "max_len": self.max_len, "rope_theta":
# PART 2 - Continue from Part 1
self.rope_theta, "layer_idx": self.layer_idx})
return config
@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
def __init__(self, **kwargs):
super().__init__()
if 'config' in kwargs and isinstance(kwargs['config'], dict):
self.cfg = kwargs['config']
elif 'vocab_size' in kwargs:
self.cfg = kwargs
else:
self.cfg = kwargs.get('cfg', kwargs)
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
block_args = {'d_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'], 'ff_dim': ff_dim, 'dropout': self.cfg['dropout'], 'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta']}
self.blocks = []
for i in range(self.cfg['n_layers']):
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
self.blocks.append(block)
self.norm = RMSNorm(name="final_norm")
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
def call(self, input_ids, training=None):
x = self.embed(input_ids)
for block in self.blocks:
x = block(x, training=training)
return self.lm_head(self.norm(x))
def get_config(self):
base_config = super().get_config()
base_config['config'] = self.cfg
return base_config
def count_parameters(model):
total_params = 0
non_zero_params = 0
for weight in model.weights:
w = weight.numpy()
total_params += w.size
non_zero_params += np.count_nonzero(w)
return total_params, non_zero_params
def format_param_count(count):
if count >= 1e9:
return f"{count/1e9:.2f}B"
elif count >= 1e6:
return f"{count/1e6:.2f}M"
elif count >= 1e3:
return f"{count/1e3:.2f}K"
else:
return str(count)
class ModelBackend(ABC):
@abstractmethod
def predict(self, input_ids):
pass
@abstractmethod
def get_name(self):
pass
@abstractmethod
def get_info(self):
pass
class KerasBackend(ModelBackend):
def __init__(self, model, name, display_name):
self.model = model
self.name = name
self.display_name = display_name
@tf.function(input_signature=[tf.TensorSpec(shape=[1, None], dtype=tf.int32)], jit_compile=True)
def fast_predict(inputs):
return model(inputs, training=False)
self.fast_predict = fast_predict
print(f" 🔥 Warming up {display_name}...")
dummy = tf.constant([[1, 2, 3]], dtype=tf.int32)
_ = self.fast_predict(dummy)
print(f" ✅ Compilation complete!")
total, non_zero = count_parameters(model)
self.total_params = total
self.non_zero_params = non_zero
self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
self.n_heads = model.cfg.get('n_heads', 0)
self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))
def predict(self, input_ids):
inputs = tf.constant([input_ids], dtype=tf.int32)
logits = self.fast_predict(inputs)
return logits[0, -1, :].numpy()
def get_name(self):
return self.display_name
def get_info(self):
info = f"{self.display_name}\n"
info += f" Total params: {format_param_count(self.total_params)}\n"
info += f" Attention heads: {self.n_heads}\n"
info += f" FFN dimension: {self.ff_dim}\n"
if self.sparsity > 1:
info += f" Sparsity: {self.sparsity:.1f}%\n"
return info
MODEL_REGISTRY = [
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
("SAM-X-1-Mini 🚀 (ADVANCED!)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini_finetuned.weights.h5", "sam1_mini_finetuned_config.json"),
("SAM-X-1-Nano ⚡⚡", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
]
def estimate_prompt_complexity(prompt):
prompt_lower = prompt.lower()
complexity_score = 0
word_count = len(prompt.split())
if word_count > 100:
complexity_score += 3
elif word_count > 50:
complexity_score += 2
elif word_count > 20:
complexity_score += 1
hard_keywords = ['analyze', 'explain', 'compare', 'evaluate', 'prove', 'derive', 'calculate', 'solve', 'reason', 'why', 'how does', 'complex', 'algorithm', 'mathematics', 'philosophy', 'theory', 'logic', 'detailed', 'comprehensive', 'thorough', 'in-depth']
for keyword in hard_keywords:
if keyword in prompt_lower:
complexity_score += 2
medium_keywords = ['write', 'create', 'generate', 'summarize', 'describe', 'list', 'what is', 'tell me', 'explain briefly']
for keyword in medium_keywords:
if keyword in prompt_lower:
complexity_score += 1
if any(word in prompt_lower for word in ['code', 'function', 'program', 'debug', 'implement']):
complexity_score += 2
if any(word in prompt_lower for word in ['first', 'then', 'next', 'finally', 'step']):
complexity_score += 1
question_marks = prompt.count('?')
if question_marks > 1:
complexity_score += 1
return complexity_score
def select_model_auto(prompt, available_models_dict, user_available_models):
complexity = estimate_prompt_complexity(prompt)
accessible = {k: v for k, v in available_models_dict.items() if k in user_available_models}
if not accessible:
return None
if complexity <= 2:
preferred = "SAM-X-1-Nano ⚡⚡"
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
elif complexity <= 5:
preferred = "SAM-X-1-Mini 🚀 (ADVANCED!)"
fallback_order = ["SAM-X-1-Nano ⚡⚡", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
elif complexity <= 8:
preferred = "SAM-X-1-Fast ⚡ (BETA)"
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Large", "SAM-X-1-Nano ⚡⚡"]
else:
preferred = "SAM-X-1-Large"
fallback_order = ["SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Nano ⚡⚡"]
if preferred in accessible:
return accessible[preferred]
for model_name in fallback_order:
if model_name in accessible:
return accessible[model_name]
return list(accessible.values())[0]
CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"
print("="*80)
print("🤖 SAM-X-1 Multi-Model Chat Interface".center(80))
print("="*80)
print(f"\n📦 Downloading config/tokenizer from: {CONFIG_TOKENIZER_REPO_ID}")
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")
with open(config_path, 'r') as f:
base_config = json.load(f)
print(f"✅ Base config loaded")
base_model_config = {'vocab_size': base_config['vocab_size'], 'd_model': base_config['hidden_size'], 'n_heads': base_config['num_attention_heads'], 'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'], 'dropout': base_config.get('dropout', 0.0), 'max_len': base_config['max_position_embeddings'], 'rope_theta': base_config['rope_theta'], 'n_layers': base_config['num_hidden_layers']}
print("\n🔤 Recreating tokenizer...")
tokenizer = Tokenizer.from_pretrained("gpt2")
eos_token = "<|endoftext|>"
eos_token_id = tokenizer.token_to_id(eos_token)
if eos_token_id is None:
tokenizer.add_special_tokens([eos_token])
eos_token_id = tokenizer.token_to_id(eos_token)
custom_tokens = ["<think>", "<think/>"]
for token in custom_tokens:
if tokenizer.token_to_id(token) is None:
tokenizer.add_special_tokens([token])
tokenizer.no_padding()
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
print(f"✅ Tokenizer ready (vocab size: {tokenizer.get_vocab_size()})")
print(f" EOS token: '{eos_token}' (ID: {eos_token_id})")
if eos_token_id is None:
raise ValueError("❌ Failed to set EOS token ID!")
print("\n" + "="*80)
print("📦 LOADING MODELS".center(80))
print("="*80)
available_models = {}
dummy_input = tf.zeros((1, 1), dtype=tf.int32)
for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
try:
print(f"\n⏳ Loading: {display_name}")
print(f" Repo: {repo_id}")
print(f" Weights: {weights_filename}")
weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
if config_filename:
print(f" Config: {config_filename}")
custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
with open(custom_config_path, 'r') as f:
model_config = json.load(f)
print(f" 📐 Custom architecture: {model_config['n_heads']} heads")
else:
model_config = base_model_config.copy()
model = SAM1Model(**model_config)
model(dummy_input)
model.load_weights(weights_path)
model.trainable = False
backend = KerasBackend(model, display_name, display_name)
available_models[display_name] = backend
print(f" ✅ Loaded successfully!")
print(f" 📊 Parameters: {format_param_count(backend.total_params)}")
except Exception as e:
print(f" ⚠️ Failed to load: {e}")
if not available_models:
raise RuntimeError("❌ No models loaded!")
print(f"\n✅ Successfully loaded {len(available_models)} model(s)")
current_backend = list(available_models.values())[0]
stop_generation = threading.Event()
def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=256):
global stop_generation
stop_generation.clear()
if backend is None:
backend = current_backend
encoded_prompt = tokenizer.encode(prompt)
input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
generated = input_ids.copy()
current_text = ""
in_thinking = False
max_len = backend.model.cfg['max_len']
start_time = time.time()
tokens_generated = 0
decode_buffer = []
decode_every = 2
last_speed_check = start_time
for step in range(max_tokens):
if stop_generation.is_set():
elapsed = time.time() - start_time
final_speed = tokens_generated / elapsed if elapsed > 0 else 0
yield "", False, -1, final_speed, True
return
current_input = generated[-max_len:]
next_token_logits = backend.predict(current_input)
if tokens_generated > 5 and tokens_generated % 10 == 0:
current_time = time.time()
elapsed_since_check = current_time - last_speed_check
if elapsed_since_check > 0:
recent_speed = 10 / elapsed_since_check
if recent_speed > 25:
decode_every = 8
elif recent_speed > 15:
decode_every = 5
elif recent_speed > 8:
decode_every = 3
else:
decode_every = 2
last_speed_check = current_time
if temperature > 0:
next_token_logits = next_token_logits / temperature
top_k = 5
top_k_indices = np.argpartition(next_token_logits, -top_k)[-top_k:]
top_k_logits = next_token_logits[top_k_indices]
max_logit = np.max(top_k_logits)
exp_logits = np.exp(top_k_logits - max_logit)
probs = exp_logits / np.sum(exp_logits)
next_token = top_k_indices[np.random.choice(top_k, p=probs)]
else:
next_token = np.argmax(next_token_logits)
if next_token == eos_token_id:
break
generated.append(int(next_token))
decode_buffer.append(int(next_token))
tokens_generated += 1
should_decode = (len(decode_buffer) >= decode_every or step == max_tokens - 1)
if should_decode:
new_text = tokenizer.decode(generated[len(input_ids):])
if len(new_text) > len(current_text):
new_chunk = new_text[len(current_text):]
current_text = new_text
if "<think>" in new_chunk:
in_thinking = True
elif "</think>" in new_chunk or "<think/>" in new_chunk:
in_thinking = False
elapsed = time.time() - start_time
tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
yield new_chunk, in_thinking, tokens_per_sec, tokens_per_sec, False
decode_buffer = []
elapsed = time.time() - start_time
final_tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
yield "", False, final_tokens_per_sec, final_tokens_per_sec, False
|