File size: 32,058 Bytes
1f69c1b
4e68118
 
 
 
 
 
 
 
 
816932f
d4b6ccd
121f516
7f368dd
 
 
 
d4b6ccd
 
 
 
 
 
 
40d9d9b
 
 
 
7f368dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e68118
7f368dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e68118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e366fc
 
4e68118
4e366fc
 
 
 
4e68118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e366fc
4e68118
 
 
 
 
4e366fc
 
 
 
7f368dd
4e68118
4e366fc
4e68118
 
 
 
 
 
 
 
 
7f368dd
 
4e68118
7f368dd
 
 
 
4e68118
 
 
 
 
 
 
 
 
 
 
 
 
7f368dd
4e68118
 
 
 
 
 
 
4e366fc
4e68118
 
4e366fc
4e68118
 
 
 
 
 
 
e640a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816932f
 
4e366fc
816932f
 
 
 
e640a8d
 
 
816932f
 
e640a8d
816932f
e640a8d
 
7f368dd
4e366fc
 
 
d4b6ccd
4e366fc
 
d4b6ccd
e640a8d
 
 
 
 
 
816932f
4e366fc
87ef6d0
4e366fc
87ef6d0
816932f
 
e640a8d
 
 
 
 
 
 
 
 
 
816932f
e640a8d
dc6d149
9a3a243
99908d8
 
e640a8d
 
99908d8
 
 
 
 
 
 
 
 
 
7f368dd
99908d8
 
 
7f368dd
99908d8
 
 
 
 
 
 
 
 
 
 
 
7f368dd
99908d8
7f368dd
 
 
99908d8
 
 
 
 
 
 
 
 
 
 
 
7f368dd
 
99908d8
7f368dd
 
 
99908d8
4e68118
e640a8d
4e366fc
e640a8d
816932f
4e68118
 
 
e640a8d
 
7f368dd
816932f
4e68118
e484dcb
4e68118
 
 
 
 
 
 
 
 
e640a8d
816932f
e484dcb
 
7f368dd
e640a8d
 
 
 
4e68118
e640a8d
 
 
 
 
 
 
 
 
 
 
7f368dd
e640a8d
 
 
 
 
 
 
 
 
 
 
 
 
7f368dd
e640a8d
 
121f516
 
4e366fc
121f516
 
816932f
 
4e68118
 
 
a162e4d
 
4e366fc
d4b6ccd
 
40d9d9b
7f368dd
99908d8
d4b6ccd
121f516
e484dcb
 
7f368dd
e484dcb
4e366fc
 
99908d8
 
 
 
 
 
7f368dd
99908d8
7f368dd
99908d8
7f368dd
99908d8
7f368dd
99908d8
4e68118
 
121f516
40d9d9b
236c93b
40d9d9b
 
 
 
4e68118
 
 
 
 
40d9d9b
d4b6ccd
7f368dd
40d9d9b
 
 
 
 
 
 
 
 
 
 
e484dcb
40d9d9b
d4b6ccd
 
e484dcb
d4b6ccd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

import tensorflow as tf
import keras
import numpy as np
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import json
from abc import ABC, abstractmethod
import time
import threading
import hashlib
import sqlite3
from datetime import datetime, timedelta
import pytz

# ==============================================================================
# Performance Optimizations for CPU
# ==============================================================================
tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(2)
tf.config.optimizer.set_jit(True)
tf.config.run_functions_eagerly(False)
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

# Australian timezone
AUSTRALIA_TZ = pytz.timezone('Australia/Sydney')

# ==============================================================================
# Database Setup
# ==============================================================================
def init_database():
    """Initialize SQLite database for users and subscriptions."""
    conn = sqlite3.connect('sam_users.db', check_same_thread=False)
    c = conn.cursor()
    
    # Users table
    c.execute('''CREATE TABLE IF NOT EXISTS users
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  username TEXT UNIQUE NOT NULL,
                  password_hash TEXT NOT NULL,
                  email TEXT,
                  plan TEXT DEFAULT 'free',
                  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                  is_admin BOOLEAN DEFAULT 0,
                  rate_limit_start TIMESTAMP,
                  messages_used_nano INTEGER DEFAULT 0,
                  messages_used_mini INTEGER DEFAULT 0,
                  messages_used_fast INTEGER DEFAULT 0,
                  messages_used_large INTEGER DEFAULT 0)''')
    
    # Upgrade requests table
    c.execute('''CREATE TABLE IF NOT EXISTS upgrade_requests
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id INTEGER,
                  requested_plan TEXT,
                  reason TEXT,
                  status TEXT DEFAULT 'pending',
                  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                  FOREIGN KEY (user_id) REFERENCES users(id))''')
    
    # Usage tracking
    c.execute('''CREATE TABLE IF NOT EXISTS usage_logs
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id INTEGER,
                  tokens_used INTEGER,
                  model_used TEXT,
                  timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                  FOREIGN KEY (user_id) REFERENCES users(id))''')
    
    # Create admin account if not exists
    admin_pass = hashlib.sha256("admin123".encode()).hexdigest()
    try:
        c.execute("INSERT INTO users (username, password_hash, email, plan, is_admin) VALUES (?, ?, ?, ?, ?)",
                  ("admin", admin_pass, "[email protected]", "pro", 1))
        conn.commit()
        print("✅ Admin account created (username: admin, password: admin123)")
    except sqlite3.IntegrityError:
        print("✅ Admin account already exists")
    
    conn.commit()
    return conn

# Global database connection
db_conn = init_database()
db_lock = threading.Lock()

# Plan limits with 3-hour rolling window
PLAN_LIMITS = {
    'free': {
        'nano_messages': -1,
        'mini_messages': -1,
        'fast_messages': 10,
        'large_messages': 8,
        'can_choose_model': False,
        'max_tokens': 256,
        'reset_hours': 3
    },
    'plus': {
        'nano_messages': -1,
        'mini_messages': -1,
        'fast_messages': -1,
        'large_messages': 20,
        'can_choose_model': True,
        'max_tokens': 384,
        'reset_hours': 3
    },
    'pro': {
        'nano_messages': -1,
        'mini_messages': -1,
        'fast_messages': -1,
        'large_messages': -1,
        'can_choose_model': True,
        'max_tokens': 512,
        'reset_hours': 3
    }
}

def get_model_type(model_name):
    """Get model type from model name."""
    if 'Nano' in model_name:
        return 'nano'
    elif 'Mini' in model_name:
        return 'mini'
    elif 'Fast' in model_name:
        return 'fast'
    elif 'Large' in model_name:
        return 'large'
    return 'nano'

# ==============================================================================
# User Management Functions
# ==============================================================================
def hash_password(password):
    return hashlib.sha256(password.encode()).hexdigest()

def create_user(username, password, email=""):
    with db_lock:
        try:
            c = db_conn.cursor()
            now = datetime.now(AUSTRALIA_TZ).isoformat()
            c.execute("INSERT INTO users (username, password_hash, email, rate_limit_start) VALUES (?, ?, ?, ?)",
                      (username, hash_password(password), email, now))
            db_conn.commit()
            return True, "Account created successfully!"
        except sqlite3.IntegrityError:
            return False, "Username already exists!"

def authenticate_user(username, password):
    with db_lock:
        c = db_conn.cursor()
        c.execute("SELECT id, password_hash, plan, is_admin FROM users WHERE username = ?", (username,))
        result = c.fetchone()
        
        if result and result[1] == hash_password(password):
            return True, {"id": result[0], "username": username, "plan": result[2], "is_admin": bool(result[3])}
        return False, None

def check_and_reset_limits(user_id):
    """Check if 3-hour window has passed and reset limits if needed."""
    with db_lock:
        c = db_conn.cursor()
        c.execute("SELECT rate_limit_start, plan FROM users WHERE id = ?", (user_id,))
        result = c.fetchone()
        
        if not result:
            return
        
        rate_limit_start_str, plan = result
        reset_hours = PLAN_LIMITS[plan]['reset_hours']
        
        if rate_limit_start_str:
            rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
            now = datetime.now(AUSTRALIA_TZ)
            
            if now - rate_limit_start >= timedelta(hours=reset_hours):
                new_start = now.isoformat()
                c.execute("""UPDATE users 
                            SET rate_limit_start = ?,
                                messages_used_nano = 0,
                                messages_used_mini = 0,
                                messages_used_fast = 0,
                                messages_used_large = 0
                            WHERE id = ?""", (new_start, user_id))
                db_conn.commit()

def get_user_limits_info(user_id):
    """Get user's current usage and limits with reset time."""
    check_and_reset_limits(user_id)
    
    with db_lock:
        c = db_conn.cursor()
        c.execute("""SELECT plan, rate_limit_start, 
                            messages_used_nano, messages_used_mini,
                            messages_used_fast, messages_used_large
                     FROM users WHERE id = ?""", (user_id,))
        result = c.fetchone()
        
        if not result:
            return None
        
        plan, rate_limit_start_str, nano_used, mini_used, fast_used, large_used = result
        limits = PLAN_LIMITS[plan]
        
        if rate_limit_start_str:
            rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
            reset_time = rate_limit_start + timedelta(hours=limits['reset_hours'])
            now = datetime.now(AUSTRALIA_TZ)
            time_until_reset = reset_time - now
            
            hours, remainder = divmod(int(time_until_reset.total_seconds()), 3600)
            minutes, seconds = divmod(remainder, 60)
            reset_str = f"{hours}h {minutes}m"
        else:
            reset_str = "N/A"
        
        return {
            'plan': plan,
            'nano_used': nano_used,
            'mini_used': mini_used,
            'fast_used': fast_used,
            'large_used': large_used,
            'nano_limit': limits['nano_messages'],
            'mini_limit': limits['mini_messages'],
            'fast_limit': limits['fast_messages'],
            'large_limit': limits['large_messages'],
            'can_choose_model': limits['can_choose_model'],
            'max_tokens': limits['max_tokens'],
            'reset_in': reset_str
        }

def can_use_model(user_id, model_name):
    """Check if user can use a specific model."""
    info = get_user_limits_info(user_id)
    if not info:
        return False, "User not found"
    
    model_type = get_model_type(model_name)
    used_key = f"{model_type}_used"
    limit_key = f"{model_type}_limit"
    
    used = info[used_key]
    limit = info[limit_key]
    
    if limit == -1:
        return True, "OK"
    
    if used >= limit:
        return False, f"Limit reached for {model_type.upper()} model ({used}/{limit}). Resets in {info['reset_in']}"
    
    return True, "OK"

def increment_model_usage(user_id, model_name):
    """Increment usage counter for a model."""
    model_type = get_model_type(model_name)
    column = f"messages_used_{model_type}"
    
    with db_lock:
        c = db_conn.cursor()
        c.execute(f"UPDATE users SET {column} = {column} + 1 WHERE id = ?", (user_id,))
        db_conn.commit()

def get_available_models_for_user(user_id):
    """Get list of models user can currently use."""
    info = get_user_limits_info(user_id)
    if not info:
        return []
    
    available = []
    
    for model_type in ['nano', 'mini', 'fast', 'large']:
        used = info[f'{model_type}_used']
        limit = info[f'{model_type}_limit']
        
        if limit == -1 or used < limit:
            for model_name in available_models.keys():
                if get_model_type(model_name) == model_type:
                    available.append(model_name)
                    break
    
    return available

def log_usage(user_id, tokens, model):
    with db_lock:
        c = db_conn.cursor()
        c.execute("INSERT INTO usage_logs (user_id, tokens_used, model_used) VALUES (?, ?, ?)",
                  (user_id, tokens, model))
        db_conn.commit()

def request_upgrade(user_id, plan, reason):
    with db_lock:
        try:
            c = db_conn.cursor()
            c.execute("INSERT INTO upgrade_requests (user_id, requested_plan, reason) VALUES (?, ?, ?)",
                      (user_id, plan, reason))
            db_conn.commit()
            return True, "Upgrade request submitted! Admin will review soon."
        except Exception as e:
            return False, f"Error: {str(e)}"

def get_all_users():
    with db_lock:
        c = db_conn.cursor()
        c.execute("""SELECT id, username, email, plan, created_at, is_admin,
                            messages_used_nano, messages_used_mini,
                            messages_used_fast, messages_used_large,
                            rate_limit_start
                     FROM users ORDER BY created_at DESC""")
        return c.fetchall()

def get_pending_requests():
    with db_lock:
        c = db_conn.cursor()
        c.execute("""SELECT r.id, u.username, r.requested_plan, r.reason, r.created_at 
                     FROM upgrade_requests r 
                     JOIN users u ON r.user_id = u.id 
                     WHERE r.status = 'pending' 
                     ORDER BY r.created_at DESC""")
        return c.fetchall()

def update_user_plan(username, new_plan):
    with db_lock:
        try:
            c = db_conn.cursor()
            now = datetime.now(AUSTRALIA_TZ).isoformat()
            c.execute("""UPDATE users 
                        SET plan = ?, 
                            rate_limit_start = ?,
                            messages_used_nano = 0,
                            messages_used_mini = 0,
                            messages_used_fast = 0,
                            messages_used_large = 0
                        WHERE username = ?""", (new_plan, now, username))
            db_conn.commit()
            return True, f"User {username} upgraded to {new_plan}!"
        except Exception as e:
            return False, f"Error: {str(e)}"

def approve_request(request_id):
    with db_lock:
        try:
            c = db_conn.cursor()
            c.execute("SELECT user_id, requested_plan FROM upgrade_requests WHERE id = ?", (request_id,))
            result = c.fetchone()
            
            if result:
                user_id, plan = result
                now = datetime.now(AUSTRALIA_TZ).isoformat()
                c.execute("""UPDATE users 
                            SET plan = ?,
                                rate_limit_start = ?,
                                messages_used_nano = 0,
                                messages_used_mini = 0,
                                messages_used_fast = 0,
                                messages_used_large = 0
                            WHERE id = ?""", (plan, now, user_id))
                c.execute("UPDATE upgrade_requests SET status = 'approved' WHERE id = ?", (request_id,))
                db_conn.commit()
                return True, "Request approved!"
            return False, "Request not found"
        except Exception as e:
            return False, f"Error: {str(e)}"

def deny_request(request_id):
    with db_lock:
        try:
            c = db_conn.cursor()
            c.execute("UPDATE upgrade_requests SET status = 'denied' WHERE id = ?", (request_id,))
            db_conn.commit()
            return True, "Request denied"
        except Exception as e:
            return False, f"Error: {str(e)}"

# ==============================================================================
# Model Architecture
# ==============================================================================
@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
    def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
        super().__init__(**kwargs)
        self.dim = dim
        self.max_len = max_len
        self.theta = theta
        self.built_cache = False

    def build(self, input_shape):
        if not self.built_cache:
            inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
            t = tf.range(self.max_len, dtype=tf.float32)
            freqs = tf.einsum("i,j->ij", t, inv_freq)
            emb = tf.concat([freqs, freqs], axis=-1)
            self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
            self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
            self.built_cache = True
        super().build(input_shape)

    def rotate_half(self, x):
        x1, x2 = tf.split(x, 2, axis=-1)
        return tf.concat([-x2, x1], axis=-1)

    def call(self, q, k):
        seq_len = tf.shape(q)[2]
        dtype = q.dtype
        cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
        sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
        q_rotated = (q * cos) + (self.rotate_half(q) * sin)
        k_rotated = (k * cos) + (self.rotate_half(k) * sin)
        return q_rotated, k_rotated

    def get_config(self):
        config = super().get_config()
        config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
        return config

@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
    def __init__(self, epsilon=1e-5, **kwargs):
        super().__init__(**kwargs)
        self.epsilon = epsilon

    def build(self, input_shape):
        self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")

    def call(self, x):
        variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
        return x * tf.math.rsqrt(variance + self.epsilon) * self.scale

    def get_config(self):
        config = super().get_config()
        config.update({"epsilon": self.epsilon})
        return config

@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
    def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
        super().__init__(**kwargs)
        self.d_model = d_model
        self.n_heads = n_heads
        self.ff_dim = ff_dim
        self.dropout_rate = dropout
        self.max_len = max_len
        self.rope_theta = rope_theta
        self.head_dim = d_model // n_heads
        self.layer_idx = layer_idx
        self.pre_attn_norm = RMSNorm()
        self.pre_ffn_norm = RMSNorm()
        self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
        self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
        self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
        self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
        self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
        self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
        self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
        self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
        self.dropout = keras.layers.Dropout(dropout)

    def call(self, x, training=None):
        B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
        dtype = x.dtype
        res = x
        y = self.pre_attn_norm(x)
        q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
        k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
        v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
        q, k = self.rope(q, k)
        scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
        mask = tf.where(tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0, tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
        scores += mask
        attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
        attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
        x = res + self.dropout(self.out_proj(attn), training=training)
        res = x
        y = self.pre_ffn_norm(x)
        ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
        return res + self.dropout(ffn, training=training)

    def get_config(self):
        config = super().get_config()
        config.update({"d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim, "dropout": self.dropout_rate, "max_len": self.max_len, "rope_theta":


# PART 2 - Continue from Part 1

        self.rope_theta, "layer_idx": self.layer_idx})
        return config

@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
    def __init__(self, **kwargs):
        super().__init__()
        if 'config' in kwargs and isinstance(kwargs['config'], dict):
            self.cfg = kwargs['config']
        elif 'vocab_size' in kwargs:
            self.cfg = kwargs
        else:
            self.cfg = kwargs.get('cfg', kwargs)
        self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
        ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
        block_args = {'d_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'], 'ff_dim': ff_dim, 'dropout': self.cfg['dropout'], 'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta']}
        self.blocks = []
        for i in range(self.cfg['n_layers']):
            block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
            self.blocks.append(block)
        self.norm = RMSNorm(name="final_norm")
        self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")

    def call(self, input_ids, training=None):
        x = self.embed(input_ids)
        for block in self.blocks:
            x = block(x, training=training)
        return self.lm_head(self.norm(x))

    def get_config(self):
        base_config = super().get_config()
        base_config['config'] = self.cfg
        return base_config

def count_parameters(model):
    total_params = 0
    non_zero_params = 0
    for weight in model.weights:
        w = weight.numpy()
        total_params += w.size
        non_zero_params += np.count_nonzero(w)
    return total_params, non_zero_params

def format_param_count(count):
    if count >= 1e9:
        return f"{count/1e9:.2f}B"
    elif count >= 1e6:
        return f"{count/1e6:.2f}M"
    elif count >= 1e3:
        return f"{count/1e3:.2f}K"
    else:
        return str(count)

class ModelBackend(ABC):
    @abstractmethod
    def predict(self, input_ids):
        pass
    @abstractmethod
    def get_name(self):
        pass
    @abstractmethod
    def get_info(self):
        pass

class KerasBackend(ModelBackend):
    def __init__(self, model, name, display_name):
        self.model = model
        self.name = name
        self.display_name = display_name
        @tf.function(input_signature=[tf.TensorSpec(shape=[1, None], dtype=tf.int32)], jit_compile=True)
        def fast_predict(inputs):
            return model(inputs, training=False)
        self.fast_predict = fast_predict
        print(f"   🔥 Warming up {display_name}...")
        dummy = tf.constant([[1, 2, 3]], dtype=tf.int32)
        _ = self.fast_predict(dummy)
        print(f"   ✅ Compilation complete!")
        total, non_zero = count_parameters(model)
        self.total_params = total
        self.non_zero_params = non_zero
        self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
        self.n_heads = model.cfg.get('n_heads', 0)
        self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))
    
    def predict(self, input_ids):
        inputs = tf.constant([input_ids], dtype=tf.int32)
        logits = self.fast_predict(inputs)
        return logits[0, -1, :].numpy()
    
    def get_name(self):
        return self.display_name
    
    def get_info(self):
        info = f"{self.display_name}\n"
        info += f"  Total params: {format_param_count(self.total_params)}\n"
        info += f"  Attention heads: {self.n_heads}\n"
        info += f"  FFN dimension: {self.ff_dim}\n"
        if self.sparsity > 1:
            info += f"  Sparsity: {self.sparsity:.1f}%\n"
        return info

MODEL_REGISTRY = [
    ("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
    ("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
    ("SAM-X-1-Mini 🚀 (ADVANCED!)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini_finetuned.weights.h5", "sam1_mini_finetuned_config.json"),
    ("SAM-X-1-Nano ⚡⚡", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
]

def estimate_prompt_complexity(prompt):
    prompt_lower = prompt.lower()
    complexity_score = 0
    word_count = len(prompt.split())
    if word_count > 100:
        complexity_score += 3
    elif word_count > 50:
        complexity_score += 2
    elif word_count > 20:
        complexity_score += 1
    hard_keywords = ['analyze', 'explain', 'compare', 'evaluate', 'prove', 'derive', 'calculate', 'solve', 'reason', 'why', 'how does', 'complex', 'algorithm', 'mathematics', 'philosophy', 'theory', 'logic', 'detailed', 'comprehensive', 'thorough', 'in-depth']
    for keyword in hard_keywords:
        if keyword in prompt_lower:
            complexity_score += 2
    medium_keywords = ['write', 'create', 'generate', 'summarize', 'describe', 'list', 'what is', 'tell me', 'explain briefly']
    for keyword in medium_keywords:
        if keyword in prompt_lower:
            complexity_score += 1
    if any(word in prompt_lower for word in ['code', 'function', 'program', 'debug', 'implement']):
        complexity_score += 2
    if any(word in prompt_lower for word in ['first', 'then', 'next', 'finally', 'step']):
        complexity_score += 1
    question_marks = prompt.count('?')
    if question_marks > 1:
        complexity_score += 1
    return complexity_score

def select_model_auto(prompt, available_models_dict, user_available_models):
    complexity = estimate_prompt_complexity(prompt)
    accessible = {k: v for k, v in available_models_dict.items() if k in user_available_models}
    if not accessible:
        return None
    if complexity <= 2:
        preferred = "SAM-X-1-Nano ⚡⚡"
        fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
    elif complexity <= 5:
        preferred = "SAM-X-1-Mini 🚀 (ADVANCED!)"
        fallback_order = ["SAM-X-1-Nano ⚡⚡", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
    elif complexity <= 8:
        preferred = "SAM-X-1-Fast ⚡ (BETA)"
        fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Large", "SAM-X-1-Nano ⚡⚡"]
    else:
        preferred = "SAM-X-1-Large"
        fallback_order = ["SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Nano ⚡⚡"]
    if preferred in accessible:
        return accessible[preferred]
    for model_name in fallback_order:
        if model_name in accessible:
            return accessible[model_name]
    return list(accessible.values())[0]

CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"
print("="*80)
print("🤖 SAM-X-1 Multi-Model Chat Interface".center(80))
print("="*80)
print(f"\n📦 Downloading config/tokenizer from: {CONFIG_TOKENIZER_REPO_ID}")
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")
with open(config_path, 'r') as f:
    base_config = json.load(f)
print(f"✅ Base config loaded")
base_model_config = {'vocab_size': base_config['vocab_size'], 'd_model': base_config['hidden_size'], 'n_heads': base_config['num_attention_heads'], 'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'], 'dropout': base_config.get('dropout', 0.0), 'max_len': base_config['max_position_embeddings'], 'rope_theta': base_config['rope_theta'], 'n_layers': base_config['num_hidden_layers']}
print("\n🔤 Recreating tokenizer...")
tokenizer = Tokenizer.from_pretrained("gpt2")
eos_token = "<|endoftext|>"
eos_token_id = tokenizer.token_to_id(eos_token)
if eos_token_id is None:
    tokenizer.add_special_tokens([eos_token])
    eos_token_id = tokenizer.token_to_id(eos_token)
custom_tokens = ["<think>", "<think/>"]
for token in custom_tokens:
    if tokenizer.token_to_id(token) is None:
        tokenizer.add_special_tokens([token])
tokenizer.no_padding()
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
print(f"✅ Tokenizer ready (vocab size: {tokenizer.get_vocab_size()})")
print(f"   EOS token: '{eos_token}' (ID: {eos_token_id})")
if eos_token_id is None:
    raise ValueError("❌ Failed to set EOS token ID!")
print("\n" + "="*80)
print("📦 LOADING MODELS".center(80))
print("="*80)
available_models = {}
dummy_input = tf.zeros((1, 1), dtype=tf.int32)
for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
    try:
        print(f"\n⏳ Loading: {display_name}")
        print(f"   Repo: {repo_id}")
        print(f"   Weights: {weights_filename}")
        weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
        if config_filename:
            print(f"   Config: {config_filename}")
            custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
            with open(custom_config_path, 'r') as f:
                model_config = json.load(f)
            print(f"   📐 Custom architecture: {model_config['n_heads']} heads")
        else:
            model_config = base_model_config.copy()
        model = SAM1Model(**model_config)
        model(dummy_input)
        model.load_weights(weights_path)
        model.trainable = False
        backend = KerasBackend(model, display_name, display_name)
        available_models[display_name] = backend
        print(f"   ✅ Loaded successfully!")
        print(f"   📊 Parameters: {format_param_count(backend.total_params)}")
    except Exception as e:
        print(f"   ⚠️  Failed to load: {e}")
if not available_models:
    raise RuntimeError("❌ No models loaded!")
print(f"\n✅ Successfully loaded {len(available_models)} model(s)")
current_backend = list(available_models.values())[0]
stop_generation = threading.Event()

def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=256):
    global stop_generation
    stop_generation.clear()
    if backend is None:
        backend = current_backend
    encoded_prompt = tokenizer.encode(prompt)
    input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
    generated = input_ids.copy()
    current_text = ""
    in_thinking = False
    max_len = backend.model.cfg['max_len']
    start_time = time.time()
    tokens_generated = 0
    decode_buffer = []
    decode_every = 2
    last_speed_check = start_time
    for step in range(max_tokens):
        if stop_generation.is_set():
            elapsed = time.time() - start_time
            final_speed = tokens_generated / elapsed if elapsed > 0 else 0
            yield "", False, -1, final_speed, True
            return
        current_input = generated[-max_len:]
        next_token_logits = backend.predict(current_input)
        if tokens_generated > 5 and tokens_generated % 10 == 0:
            current_time = time.time()
            elapsed_since_check = current_time - last_speed_check
            if elapsed_since_check > 0:
                recent_speed = 10 / elapsed_since_check
                if recent_speed > 25:
                    decode_every = 8
                elif recent_speed > 15:
                    decode_every = 5
                elif recent_speed > 8:
                    decode_every = 3
                else:
                    decode_every = 2
                last_speed_check = current_time
        if temperature > 0:
            next_token_logits = next_token_logits / temperature
            top_k = 5
            top_k_indices = np.argpartition(next_token_logits, -top_k)[-top_k:]
            top_k_logits = next_token_logits[top_k_indices]
            max_logit = np.max(top_k_logits)
            exp_logits = np.exp(top_k_logits - max_logit)
            probs = exp_logits / np.sum(exp_logits)
            next_token = top_k_indices[np.random.choice(top_k, p=probs)]
        else:
            next_token = np.argmax(next_token_logits)
        if next_token == eos_token_id:
            break
        generated.append(int(next_token))
        decode_buffer.append(int(next_token))
        tokens_generated += 1
        should_decode = (len(decode_buffer) >= decode_every or step == max_tokens - 1)
        if should_decode:
            new_text = tokenizer.decode(generated[len(input_ids):])
            if len(new_text) > len(current_text):
                new_chunk = new_text[len(current_text):]
                current_text = new_text
                if "<think>" in new_chunk:
                    in_thinking = True
                elif "</think>" in new_chunk or "<think/>" in new_chunk:
                    in_thinking = False
                elapsed = time.time() - start_time
                tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
                yield new_chunk, in_thinking, tokens_per_sec, tokens_per_sec, False
                decode_buffer = []
    elapsed = time.time() - start_time
    final_tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
    yield "", False, final_tokens_per_sec, final_tokens_per_sec, False