Update app.py
Browse files
app.py
CHANGED
|
@@ -11,26 +11,371 @@ import json
|
|
| 11 |
from abc import ABC, abstractmethod
|
| 12 |
import time
|
| 13 |
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# ==============================================================================
|
| 16 |
# Performance Optimizations for CPU
|
| 17 |
# ==============================================================================
|
| 18 |
-
# Set TensorFlow to use fewer threads (better for 2vCPU)
|
| 19 |
tf.config.threading.set_inter_op_parallelism_threads(1)
|
| 20 |
tf.config.threading.set_intra_op_parallelism_threads(2)
|
| 21 |
-
|
| 22 |
-
# Enable XLA compilation for faster execution
|
| 23 |
tf.config.optimizer.set_jit(True)
|
| 24 |
-
|
| 25 |
-
# Disable eager execution for better performance
|
| 26 |
tf.config.run_functions_eagerly(False)
|
| 27 |
-
|
| 28 |
-
# Memory optimization
|
| 29 |
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'
|
| 30 |
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# ==============================================================================
|
| 33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# ==============================================================================
|
| 35 |
@keras.saving.register_keras_serializable()
|
| 36 |
class RotaryEmbedding(keras.layers.Layer):
|
|
@@ -47,7 +392,6 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 47 |
t = tf.range(self.max_len, dtype=tf.float32)
|
| 48 |
freqs = tf.einsum("i,j->ij", t, inv_freq)
|
| 49 |
emb = tf.concat([freqs, freqs], axis=-1)
|
| 50 |
-
|
| 51 |
self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
|
| 52 |
self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
|
| 53 |
self.built_cache = True
|
|
@@ -62,10 +406,8 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 62 |
dtype = q.dtype
|
| 63 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 64 |
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 65 |
-
|
| 66 |
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
|
| 67 |
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
|
| 68 |
-
|
| 69 |
return q_rotated, k_rotated
|
| 70 |
|
| 71 |
def get_config(self):
|
|
@@ -73,7 +415,6 @@ class RotaryEmbedding(keras.layers.Layer):
|
|
| 73 |
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 74 |
return config
|
| 75 |
|
| 76 |
-
|
| 77 |
@keras.saving.register_keras_serializable()
|
| 78 |
class RMSNorm(keras.layers.Layer):
|
| 79 |
def __init__(self, epsilon=1e-5, **kwargs):
|
|
@@ -92,7 +433,6 @@ class RMSNorm(keras.layers.Layer):
|
|
| 92 |
config.update({"epsilon": self.epsilon})
|
| 93 |
return config
|
| 94 |
|
| 95 |
-
|
| 96 |
@keras.saving.register_keras_serializable()
|
| 97 |
class TransformerBlock(keras.layers.Layer):
|
| 98 |
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
|
|
@@ -105,68 +445,47 @@ class TransformerBlock(keras.layers.Layer):
|
|
| 105 |
self.rope_theta = rope_theta
|
| 106 |
self.head_dim = d_model // n_heads
|
| 107 |
self.layer_idx = layer_idx
|
| 108 |
-
|
| 109 |
self.pre_attn_norm = RMSNorm()
|
| 110 |
self.pre_ffn_norm = RMSNorm()
|
| 111 |
-
|
| 112 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
|
| 113 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
|
| 114 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
|
| 115 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
|
| 116 |
-
|
| 117 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
| 118 |
-
|
| 119 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
|
| 120 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
|
| 121 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
|
| 122 |
-
|
| 123 |
self.dropout = keras.layers.Dropout(dropout)
|
| 124 |
|
| 125 |
def call(self, x, training=None):
|
| 126 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 127 |
dtype = x.dtype
|
| 128 |
-
|
| 129 |
res = x
|
| 130 |
y = self.pre_attn_norm(x)
|
| 131 |
-
|
| 132 |
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 133 |
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 134 |
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 135 |
-
|
| 136 |
q, k = self.rope(q, k)
|
| 137 |
-
|
| 138 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 139 |
-
|
| 140 |
-
mask = tf.where(
|
| 141 |
-
tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
|
| 142 |
-
tf.constant(-1e9, dtype=dtype),
|
| 143 |
-
tf.constant(0.0, dtype=dtype)
|
| 144 |
-
)
|
| 145 |
scores += mask
|
| 146 |
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
|
| 147 |
-
|
| 148 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 149 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
| 150 |
-
|
| 151 |
res = x
|
| 152 |
y = self.pre_ffn_norm(x)
|
| 153 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
| 154 |
-
|
| 155 |
return res + self.dropout(ffn, training=training)
|
| 156 |
|
| 157 |
def get_config(self):
|
| 158 |
config = super().get_config()
|
| 159 |
-
config.update({
|
| 160 |
-
|
| 161 |
-
"n_heads": self.n_heads,
|
| 162 |
-
"ff_dim": self.ff_dim,
|
| 163 |
-
"dropout": self.dropout_rate,
|
| 164 |
-
"max_len": self.max_len,
|
| 165 |
-
"rope_theta": self.rope_theta,
|
| 166 |
-
"layer_idx": self.layer_idx
|
| 167 |
-
})
|
| 168 |
-
return config
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
@keras.saving.register_keras_serializable()
|
| 172 |
class SAM1Model(keras.Model):
|
|
@@ -178,33 +497,20 @@ class SAM1Model(keras.Model):
|
|
| 178 |
self.cfg = kwargs
|
| 179 |
else:
|
| 180 |
self.cfg = kwargs.get('cfg', kwargs)
|
| 181 |
-
|
| 182 |
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
|
| 183 |
-
|
| 184 |
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
|
| 185 |
-
block_args = {
|
| 186 |
-
'd_model': self.cfg['d_model'],
|
| 187 |
-
'n_heads': self.cfg['n_heads'],
|
| 188 |
-
'ff_dim': ff_dim,
|
| 189 |
-
'dropout': self.cfg['dropout'],
|
| 190 |
-
'max_len': self.cfg['max_len'],
|
| 191 |
-
'rope_theta': self.cfg['rope_theta']
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
self.blocks = []
|
| 195 |
for i in range(self.cfg['n_layers']):
|
| 196 |
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
|
| 197 |
self.blocks.append(block)
|
| 198 |
-
|
| 199 |
self.norm = RMSNorm(name="final_norm")
|
| 200 |
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
|
| 201 |
|
| 202 |
def call(self, input_ids, training=None):
|
| 203 |
x = self.embed(input_ids)
|
| 204 |
-
|
| 205 |
for block in self.blocks:
|
| 206 |
x = block(x, training=training)
|
| 207 |
-
|
| 208 |
return self.lm_head(self.norm(x))
|
| 209 |
|
| 210 |
def get_config(self):
|
|
@@ -212,25 +518,16 @@ class SAM1Model(keras.Model):
|
|
| 212 |
base_config['config'] = self.cfg
|
| 213 |
return base_config
|
| 214 |
|
| 215 |
-
|
| 216 |
-
# ==============================================================================
|
| 217 |
-
# Helper Functions
|
| 218 |
-
# ==============================================================================
|
| 219 |
def count_parameters(model):
|
| 220 |
-
"""Count total and non-zero parameters in model."""
|
| 221 |
total_params = 0
|
| 222 |
non_zero_params = 0
|
| 223 |
-
|
| 224 |
for weight in model.weights:
|
| 225 |
w = weight.numpy()
|
| 226 |
total_params += w.size
|
| 227 |
non_zero_params += np.count_nonzero(w)
|
| 228 |
-
|
| 229 |
return total_params, non_zero_params
|
| 230 |
|
| 231 |
-
|
| 232 |
def format_param_count(count):
|
| 233 |
-
"""Format parameter count in human readable format."""
|
| 234 |
if count >= 1e9:
|
| 235 |
return f"{count/1e9:.2f}B"
|
| 236 |
elif count >= 1e6:
|
|
@@ -240,53 +537,34 @@ def format_param_count(count):
|
|
| 240 |
else:
|
| 241 |
return str(count)
|
| 242 |
|
| 243 |
-
|
| 244 |
-
# ==============================================================================
|
| 245 |
-
# Model Backend Interface
|
| 246 |
-
# ==============================================================================
|
| 247 |
class ModelBackend(ABC):
|
| 248 |
@abstractmethod
|
| 249 |
def predict(self, input_ids):
|
| 250 |
pass
|
| 251 |
-
|
| 252 |
@abstractmethod
|
| 253 |
def get_name(self):
|
| 254 |
pass
|
| 255 |
-
|
| 256 |
@abstractmethod
|
| 257 |
def get_info(self):
|
| 258 |
pass
|
| 259 |
|
| 260 |
-
|
| 261 |
class KerasBackend(ModelBackend):
|
| 262 |
def __init__(self, model, name, display_name):
|
| 263 |
self.model = model
|
| 264 |
self.name = name
|
| 265 |
self.display_name = display_name
|
| 266 |
-
|
| 267 |
-
# Pre-compile predict function for faster inference
|
| 268 |
-
@tf.function(
|
| 269 |
-
input_signature=[tf.TensorSpec(shape=[1, None], dtype=tf.int32)],
|
| 270 |
-
jit_compile=True
|
| 271 |
-
)
|
| 272 |
def fast_predict(inputs):
|
| 273 |
return model(inputs, training=False)
|
| 274 |
-
|
| 275 |
self.fast_predict = fast_predict
|
| 276 |
-
|
| 277 |
-
# Warm up compilation with dummy input
|
| 278 |
print(f" 🔥 Warming up {display_name}...")
|
| 279 |
dummy = tf.constant([[1, 2, 3]], dtype=tf.int32)
|
| 280 |
_ = self.fast_predict(dummy)
|
| 281 |
print(f" ✅ Compilation complete!")
|
| 282 |
-
|
| 283 |
-
# Count parameters
|
| 284 |
total, non_zero = count_parameters(model)
|
| 285 |
self.total_params = total
|
| 286 |
self.non_zero_params = non_zero
|
| 287 |
self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
|
| 288 |
-
|
| 289 |
-
# Calculate actual model config for speed estimation
|
| 290 |
self.n_heads = model.cfg.get('n_heads', 0)
|
| 291 |
self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))
|
| 292 |
|
|
@@ -307,10 +585,6 @@ class KerasBackend(ModelBackend):
|
|
| 307 |
info += f" Sparsity: {self.sparsity:.1f}%\n"
|
| 308 |
return info
|
| 309 |
|
| 310 |
-
|
| 311 |
-
# ==============================================================================
|
| 312 |
-
# EASY MODEL REGISTRY - ADD YOUR MODELS HERE!
|
| 313 |
-
# ==============================================================================
|
| 314 |
MODEL_REGISTRY = [
|
| 315 |
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
|
| 316 |
("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
|
|
@@ -318,22 +592,9 @@ MODEL_REGISTRY = [
|
|
| 318 |
("SAM-X-1-Nano ⚡⚡", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
|
| 319 |
]
|
| 320 |
|
| 321 |
-
# Model complexity scores for auto-selection (higher = more capable)
|
| 322 |
-
MODEL_COMPLEXITY = {
|
| 323 |
-
"SAM-X-1-Nano ⚡⚡": 1,
|
| 324 |
-
"SAM-X-1-Mini 🚀 (ADVANCED!)": 2,
|
| 325 |
-
"SAM-X-1-Fast ⚡ (BETA)": 3,
|
| 326 |
-
"SAM-X-1-Large": 4
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
def estimate_prompt_complexity(prompt):
|
| 330 |
-
"""Estimate prompt complexity to choose appropriate model."""
|
| 331 |
prompt_lower = prompt.lower()
|
| 332 |
-
|
| 333 |
-
# Count complexity indicators
|
| 334 |
complexity_score = 0
|
| 335 |
-
|
| 336 |
-
# Length-based complexity
|
| 337 |
word_count = len(prompt.split())
|
| 338 |
if word_count > 100:
|
| 339 |
complexity_score += 3
|
|
@@ -341,52 +602,28 @@ def estimate_prompt_complexity(prompt):
|
|
| 341 |
complexity_score += 2
|
| 342 |
elif word_count > 20:
|
| 343 |
complexity_score += 1
|
| 344 |
-
|
| 345 |
-
# Hard reasoning keywords (need Large/Fast)
|
| 346 |
-
hard_keywords = [
|
| 347 |
-
'analyze', 'explain', 'compare', 'evaluate', 'prove', 'derive',
|
| 348 |
-
'calculate', 'solve', 'reason', 'why', 'how does', 'complex',
|
| 349 |
-
'algorithm', 'mathematics', 'philosophy', 'theory', 'logic',
|
| 350 |
-
'detailed', 'comprehensive', 'thorough', 'in-depth'
|
| 351 |
-
]
|
| 352 |
for keyword in hard_keywords:
|
| 353 |
if keyword in prompt_lower:
|
| 354 |
complexity_score += 2
|
| 355 |
-
|
| 356 |
-
# Medium complexity keywords (need Mini/Fast)
|
| 357 |
-
medium_keywords = [
|
| 358 |
-
'write', 'create', 'generate', 'summarize', 'describe',
|
| 359 |
-
'list', 'what is', 'tell me', 'explain briefly'
|
| 360 |
-
]
|
| 361 |
for keyword in medium_keywords:
|
| 362 |
if keyword in prompt_lower:
|
| 363 |
complexity_score += 1
|
| 364 |
-
|
| 365 |
-
# Code-related (usually complex)
|
| 366 |
if any(word in prompt_lower for word in ['code', 'function', 'program', 'debug', 'implement']):
|
| 367 |
complexity_score += 2
|
| 368 |
-
|
| 369 |
-
# Multi-step or multi-part questions
|
| 370 |
if any(word in prompt_lower for word in ['first', 'then', 'next', 'finally', 'step']):
|
| 371 |
complexity_score += 1
|
| 372 |
-
|
| 373 |
-
# Questions with multiple parts
|
| 374 |
question_marks = prompt.count('?')
|
| 375 |
if question_marks > 1:
|
| 376 |
complexity_score += 1
|
| 377 |
-
|
| 378 |
return complexity_score
|
| 379 |
|
| 380 |
-
def select_model_auto(prompt,
|
| 381 |
-
"""Automatically select best model based on prompt complexity."""
|
| 382 |
complexity = estimate_prompt_complexity(prompt)
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
# 3-5: Medium questions -> Mini (balanced)
|
| 387 |
-
# 6-8: Complex questions -> Fast (capable)
|
| 388 |
-
# 9+: Very complex -> Large (most capable)
|
| 389 |
-
|
| 390 |
if complexity <= 2:
|
| 391 |
preferred = "SAM-X-1-Nano ⚡⚡"
|
| 392 |
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
|
|
@@ -399,208 +636,114 @@ def select_model_auto(prompt, available_models):
|
|
| 399 |
else:
|
| 400 |
preferred = "SAM-X-1-Large"
|
| 401 |
fallback_order = ["SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Nano ⚡⚡"]
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
if preferred in available_models:
|
| 405 |
-
print(f" 🎯 Auto-selected {preferred} (complexity: {complexity})")
|
| 406 |
-
return available_models[preferred]
|
| 407 |
-
|
| 408 |
-
# Fallback to next best available
|
| 409 |
for model_name in fallback_order:
|
| 410 |
-
if model_name in
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
# Last resort: return any available model
|
| 415 |
-
return list(available_models.values())[0]
|
| 416 |
|
| 417 |
-
# ==============================================================================
|
| 418 |
-
# Load Models
|
| 419 |
-
# ==============================================================================
|
| 420 |
CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"
|
| 421 |
-
|
| 422 |
print("="*80)
|
| 423 |
print("🤖 SAM-X-1 Multi-Model Chat Interface".center(80))
|
| 424 |
print("="*80)
|
| 425 |
-
|
| 426 |
-
# Download config and tokenizer
|
| 427 |
print(f"\n📦 Downloading config/tokenizer from: {CONFIG_TOKENIZER_REPO_ID}")
|
| 428 |
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
|
| 429 |
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")
|
| 430 |
-
|
| 431 |
-
# Load config
|
| 432 |
with open(config_path, 'r') as f:
|
| 433 |
base_config = json.load(f)
|
| 434 |
-
|
| 435 |
print(f"✅ Base config loaded")
|
| 436 |
-
|
| 437 |
-
# Build base model config
|
| 438 |
-
base_model_config = {
|
| 439 |
-
'vocab_size': base_config['vocab_size'],
|
| 440 |
-
'd_model': base_config['hidden_size'],
|
| 441 |
-
'n_heads': base_config['num_attention_heads'],
|
| 442 |
-
'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'],
|
| 443 |
-
'dropout': base_config.get('dropout', 0.0),
|
| 444 |
-
'max_len': base_config['max_position_embeddings'],
|
| 445 |
-
'rope_theta': base_config['rope_theta'],
|
| 446 |
-
'n_layers': base_config['num_hidden_layers']
|
| 447 |
-
}
|
| 448 |
-
|
| 449 |
-
# ==============================================================================
|
| 450 |
-
# FIX: Proper EOS token handling
|
| 451 |
-
# ==============================================================================
|
| 452 |
print("\n🔤 Recreating tokenizer...")
|
| 453 |
tokenizer = Tokenizer.from_pretrained("gpt2")
|
| 454 |
-
|
| 455 |
-
# GPT-2's actual EOS token is "<|endoftext|>"
|
| 456 |
eos_token = "<|endoftext|>"
|
| 457 |
eos_token_id = tokenizer.token_to_id(eos_token)
|
| 458 |
-
|
| 459 |
if eos_token_id is None:
|
| 460 |
-
# Fallback to adding it
|
| 461 |
tokenizer.add_special_tokens([eos_token])
|
| 462 |
eos_token_id = tokenizer.token_to_id(eos_token)
|
| 463 |
-
|
| 464 |
-
# Add custom tokens
|
| 465 |
custom_tokens = ["<think>", "<think/>"]
|
| 466 |
for token in custom_tokens:
|
| 467 |
if tokenizer.token_to_id(token) is None:
|
| 468 |
tokenizer.add_special_tokens([token])
|
| 469 |
-
|
| 470 |
tokenizer.no_padding()
|
| 471 |
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
|
| 472 |
-
|
| 473 |
print(f"✅ Tokenizer ready (vocab size: {tokenizer.get_vocab_size()})")
|
| 474 |
print(f" EOS token: '{eos_token}' (ID: {eos_token_id})")
|
| 475 |
-
|
| 476 |
-
# Verify EOS token is valid
|
| 477 |
if eos_token_id is None:
|
| 478 |
-
raise ValueError("❌ Failed to set EOS token ID!
|
| 479 |
-
|
| 480 |
-
# Load all models from registry
|
| 481 |
print("\n" + "="*80)
|
| 482 |
print("📦 LOADING MODELS".center(80))
|
| 483 |
print("="*80)
|
| 484 |
-
|
| 485 |
available_models = {}
|
| 486 |
dummy_input = tf.zeros((1, 1), dtype=tf.int32)
|
| 487 |
-
|
| 488 |
for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
|
| 489 |
try:
|
| 490 |
print(f"\n⏳ Loading: {display_name}")
|
| 491 |
print(f" Repo: {repo_id}")
|
| 492 |
print(f" Weights: {weights_filename}")
|
| 493 |
-
|
| 494 |
-
# Download weights
|
| 495 |
weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
| 496 |
-
|
| 497 |
-
# Load custom config if specified (for pruned models)
|
| 498 |
if config_filename:
|
| 499 |
print(f" Config: {config_filename}")
|
| 500 |
custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
|
| 501 |
with open(custom_config_path, 'r') as f:
|
| 502 |
model_config = json.load(f)
|
| 503 |
-
print(f" 📐 Custom architecture: {model_config['n_heads']} heads
|
| 504 |
else:
|
| 505 |
model_config = base_model_config.copy()
|
| 506 |
-
|
| 507 |
-
# Create model with appropriate config
|
| 508 |
model = SAM1Model(**model_config)
|
| 509 |
model(dummy_input)
|
| 510 |
model.load_weights(weights_path)
|
| 511 |
model.trainable = False
|
| 512 |
-
|
| 513 |
-
# Create backend
|
| 514 |
backend = KerasBackend(model, display_name, display_name)
|
| 515 |
available_models[display_name] = backend
|
| 516 |
-
|
| 517 |
-
# Print stats
|
| 518 |
print(f" ✅ Loaded successfully!")
|
| 519 |
print(f" 📊 Parameters: {format_param_count(backend.total_params)}")
|
| 520 |
-
print(f" 📊 Attention heads: {backend.n_heads}")
|
| 521 |
-
print(f" 📊 FFN dimension: {backend.ff_dim}")
|
| 522 |
-
|
| 523 |
except Exception as e:
|
| 524 |
print(f" ⚠️ Failed to load: {e}")
|
| 525 |
-
print(f" Skipping {display_name}...")
|
| 526 |
-
|
| 527 |
if not available_models:
|
| 528 |
-
raise RuntimeError("❌ No models loaded!
|
| 529 |
-
|
| 530 |
print(f"\n✅ Successfully loaded {len(available_models)} model(s)")
|
| 531 |
-
print(f" Device: {'GPU' if len(tf.config.list_physical_devices('GPU')) > 0 else 'CPU'}")
|
| 532 |
-
|
| 533 |
current_backend = list(available_models.values())[0]
|
| 534 |
-
|
| 535 |
-
# Global stop flag
|
| 536 |
stop_generation = threading.Event()
|
| 537 |
|
| 538 |
-
|
| 539 |
-
# ==============================================================================
|
| 540 |
-
# FIX: Improved generation function with better stop handling
|
| 541 |
-
# ==============================================================================
|
| 542 |
def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=256):
|
| 543 |
-
"""Generate response and yield tokens one by one for streaming."""
|
| 544 |
global stop_generation
|
| 545 |
stop_generation.clear()
|
| 546 |
-
|
| 547 |
if backend is None:
|
| 548 |
backend = current_backend
|
| 549 |
-
|
| 550 |
-
# Encode prompt
|
| 551 |
encoded_prompt = tokenizer.encode(prompt)
|
| 552 |
input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
|
| 553 |
generated = input_ids.copy()
|
| 554 |
-
|
| 555 |
current_text = ""
|
| 556 |
in_thinking = False
|
| 557 |
-
|
| 558 |
-
# Get max_len from the backend's model config
|
| 559 |
max_len = backend.model.cfg['max_len']
|
| 560 |
-
|
| 561 |
-
# Track timing
|
| 562 |
start_time = time.time()
|
| 563 |
tokens_generated = 0
|
| 564 |
-
|
| 565 |
-
# *** DYNAMIC DECODE BATCHING: Adjust based on generation speed ***
|
| 566 |
decode_buffer = []
|
| 567 |
-
decode_every = 2
|
| 568 |
last_speed_check = start_time
|
| 569 |
-
|
| 570 |
-
# Generate tokens
|
| 571 |
for step in range(max_tokens):
|
| 572 |
-
# *** FIX: Check stop flag FIRST before any processing ***
|
| 573 |
if stop_generation.is_set():
|
| 574 |
-
print(f" 🛑 Stop requested at token {tokens_generated}")
|
| 575 |
-
# Calculate final speed
|
| 576 |
elapsed = time.time() - start_time
|
| 577 |
final_speed = tokens_generated / elapsed if elapsed > 0 else 0
|
| 578 |
-
yield "", False, -1, final_speed, True
|
| 579 |
return
|
| 580 |
-
|
| 581 |
current_input = generated[-max_len:]
|
| 582 |
-
|
| 583 |
-
# Get logits from selected backend
|
| 584 |
next_token_logits = backend.predict(current_input)
|
| 585 |
-
|
| 586 |
-
# *** DYNAMIC BATCHING: Adjust decode_every based on speed ***
|
| 587 |
-
# Check speed every 10 tokens after warmup
|
| 588 |
if tokens_generated > 5 and tokens_generated % 10 == 0:
|
| 589 |
current_time = time.time()
|
| 590 |
elapsed_since_check = current_time - last_speed_check
|
| 591 |
if elapsed_since_check > 0:
|
| 592 |
recent_speed = 10 / elapsed_since_check
|
| 593 |
-
# Adaptive batching: faster models can batch more
|
| 594 |
if recent_speed > 25:
|
| 595 |
-
decode_every = 8
|
| 596 |
elif recent_speed > 15:
|
| 597 |
-
decode_every = 5
|
| 598 |
elif recent_speed > 8:
|
| 599 |
-
decode_every = 3
|
| 600 |
else:
|
| 601 |
-
decode_every = 2
|
| 602 |
last_speed_check = current_time
|
| 603 |
-
|
| 604 |
if temperature > 0:
|
| 605 |
next_token_logits = next_token_logits / temperature
|
| 606 |
top_k = 5
|
|
@@ -612,524 +755,26 @@ def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=2
|
|
| 612 |
next_token = top_k_indices[np.random.choice(top_k, p=probs)]
|
| 613 |
else:
|
| 614 |
next_token = np.argmax(next_token_logits)
|
| 615 |
-
|
| 616 |
-
# *** FIX: Check for EOS token IMMEDIATELY and break ***
|
| 617 |
if next_token == eos_token_id:
|
| 618 |
-
print(f" 🛑 EOS token detected at position {tokens_generated}")
|
| 619 |
break
|
| 620 |
-
|
| 621 |
generated.append(int(next_token))
|
| 622 |
decode_buffer.append(int(next_token))
|
| 623 |
tokens_generated += 1
|
| 624 |
-
|
| 625 |
-
# Decode in batches for better performance
|
| 626 |
-
should_decode = (len(decode_buffer) >= decode_every or
|
| 627 |
-
step == max_tokens - 1)
|
| 628 |
-
|
| 629 |
if should_decode:
|
| 630 |
new_text = tokenizer.decode(generated[len(input_ids):])
|
| 631 |
if len(new_text) > len(current_text):
|
| 632 |
new_chunk = new_text[len(current_text):]
|
| 633 |
current_text = new_text
|
| 634 |
-
|
| 635 |
if "<think>" in new_chunk:
|
| 636 |
in_thinking = True
|
| 637 |
elif "</think>" in new_chunk or "<think/>" in new_chunk:
|
| 638 |
in_thinking = False
|
| 639 |
-
|
| 640 |
-
# Calculate tokens/sec
|
| 641 |
elapsed = time.time() - start_time
|
| 642 |
tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
|
| 643 |
-
|
| 644 |
yield new_chunk, in_thinking, tokens_per_sec, tokens_per_sec, False
|
| 645 |
decode_buffer = []
|
| 646 |
-
|
| 647 |
-
# Final stats
|
| 648 |
elapsed = time.time() - start_time
|
| 649 |
final_tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
|
| 650 |
yield "", False, final_tokens_per_sec, final_tokens_per_sec, False
|
| 651 |
|
| 652 |
-
|
| 653 |
-
# ==============================================================================
|
| 654 |
-
# Gradio Interface
|
| 655 |
-
# ==============================================================================
|
| 656 |
-
if __name__ == "__main__":
|
| 657 |
-
import gradio as gr
|
| 658 |
-
|
| 659 |
-
custom_css = """
|
| 660 |
-
.chat-container {
|
| 661 |
-
height: 600px;
|
| 662 |
-
overflow-y: auto;
|
| 663 |
-
padding: 20px;
|
| 664 |
-
background: #ffffff;
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
-
.user-message {
|
| 668 |
-
background: #f7f7f8;
|
| 669 |
-
padding: 16px;
|
| 670 |
-
margin: 12px 0;
|
| 671 |
-
border-radius: 8px;
|
| 672 |
-
}
|
| 673 |
-
|
| 674 |
-
.assistant-message {
|
| 675 |
-
background: #ffffff;
|
| 676 |
-
padding: 16px;
|
| 677 |
-
margin: 12px 0;
|
| 678 |
-
border-radius: 8px;
|
| 679 |
-
border-left: 3px solid #10a37f;
|
| 680 |
-
}
|
| 681 |
-
|
| 682 |
-
.message-content {
|
| 683 |
-
color: #353740;
|
| 684 |
-
line-height: 1.6;
|
| 685 |
-
font-size: 15px;
|
| 686 |
-
}
|
| 687 |
-
|
| 688 |
-
.message-header {
|
| 689 |
-
font-weight: 600;
|
| 690 |
-
margin-bottom: 8px;
|
| 691 |
-
color: #353740;
|
| 692 |
-
font-size: 14px;
|
| 693 |
-
}
|
| 694 |
-
|
| 695 |
-
.thinking-content {
|
| 696 |
-
color: #6b7280;
|
| 697 |
-
font-style: italic;
|
| 698 |
-
border-left: 3px solid #d1d5db;
|
| 699 |
-
padding-left: 12px;
|
| 700 |
-
margin: 8px 0;
|
| 701 |
-
background: #f9fafb;
|
| 702 |
-
padding: 8px 12px;
|
| 703 |
-
border-radius: 4px;
|
| 704 |
-
}
|
| 705 |
-
|
| 706 |
-
.input-row {
|
| 707 |
-
background: #ffffff;
|
| 708 |
-
padding: 12px;
|
| 709 |
-
border-radius: 8px;
|
| 710 |
-
margin-top: 12px;
|
| 711 |
-
border: 1px solid #e5e7eb;
|
| 712 |
-
}
|
| 713 |
-
|
| 714 |
-
.gradio-container {
|
| 715 |
-
max-width: 900px !important;
|
| 716 |
-
margin: auto !important;
|
| 717 |
-
}
|
| 718 |
-
|
| 719 |
-
.announcement-banner {
|
| 720 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 721 |
-
color: white;
|
| 722 |
-
padding: 20px 28px;
|
| 723 |
-
border-radius: 12px;
|
| 724 |
-
margin-bottom: 20px;
|
| 725 |
-
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
| 726 |
-
text-align: center;
|
| 727 |
-
font-size: 16px;
|
| 728 |
-
font-weight: 500;
|
| 729 |
-
animation: slideIn 0.5s ease-out;
|
| 730 |
-
line-height: 1.6;
|
| 731 |
-
}
|
| 732 |
-
|
| 733 |
-
@keyframes slideIn {
|
| 734 |
-
from {
|
| 735 |
-
opacity: 0;
|
| 736 |
-
transform: translateY(-20px);
|
| 737 |
-
}
|
| 738 |
-
to {
|
| 739 |
-
opacity: 1;
|
| 740 |
-
transform: translateY(0);
|
| 741 |
-
}
|
| 742 |
-
}
|
| 743 |
-
|
| 744 |
-
.announcement-banner strong {
|
| 745 |
-
font-weight: 700;
|
| 746 |
-
font-size: 18px;
|
| 747 |
-
}
|
| 748 |
-
|
| 749 |
-
.settings-panel {
|
| 750 |
-
background: #f9fafb;
|
| 751 |
-
padding: 16px;
|
| 752 |
-
border-radius: 8px;
|
| 753 |
-
margin-bottom: 12px;
|
| 754 |
-
border: 1px solid #e5e7eb;
|
| 755 |
-
}
|
| 756 |
-
|
| 757 |
-
.model-info {
|
| 758 |
-
background: #f0f9ff;
|
| 759 |
-
border: 1px solid #bae6fd;
|
| 760 |
-
padding: 12px;
|
| 761 |
-
border-radius: 8px;
|
| 762 |
-
margin-top: 8px;
|
| 763 |
-
font-size: 13px;
|
| 764 |
-
font-family: monospace;
|
| 765 |
-
white-space: pre-line;
|
| 766 |
-
}
|
| 767 |
-
|
| 768 |
-
.speed-indicator {
|
| 769 |
-
background: #dcfce7;
|
| 770 |
-
border: 1px solid #86efac;
|
| 771 |
-
padding: 8px 12px;
|
| 772 |
-
border-radius: 6px;
|
| 773 |
-
margin-top: 8px;
|
| 774 |
-
font-size: 14px;
|
| 775 |
-
font-weight: 600;
|
| 776 |
-
color: #166534;
|
| 777 |
-
text-align: center;
|
| 778 |
-
}
|
| 779 |
-
|
| 780 |
-
/* Circular Send Button */
|
| 781 |
-
.send-btn-wrapper {
|
| 782 |
-
display: flex;
|
| 783 |
-
gap: 8px;
|
| 784 |
-
align-items: center;
|
| 785 |
-
}
|
| 786 |
-
|
| 787 |
-
.circular-btn {
|
| 788 |
-
width: 48px !important;
|
| 789 |
-
height: 48px !important;
|
| 790 |
-
min-width: 48px !important;
|
| 791 |
-
border-radius: 50% !important;
|
| 792 |
-
padding: 0 !important;
|
| 793 |
-
display: flex !important;
|
| 794 |
-
align-items: center !important;
|
| 795 |
-
justify-content: center !important;
|
| 796 |
-
font-size: 20px !important;
|
| 797 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.15) !important;
|
| 798 |
-
transition: all 0.2s ease !important;
|
| 799 |
-
}
|
| 800 |
-
|
| 801 |
-
.circular-btn:hover:not(:disabled) {
|
| 802 |
-
transform: scale(1.05) !important;
|
| 803 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.2) !important;
|
| 804 |
-
}
|
| 805 |
-
|
| 806 |
-
.circular-btn:active:not(:disabled) {
|
| 807 |
-
transform: scale(0.95) !important;
|
| 808 |
-
}
|
| 809 |
-
|
| 810 |
-
.send-btn {
|
| 811 |
-
background: linear-gradient(135deg, #10a37f 0%, #0d8c6c 100%) !important;
|
| 812 |
-
border: none !important;
|
| 813 |
-
}
|
| 814 |
-
|
| 815 |
-
.stop-btn {
|
| 816 |
-
background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%) !important;
|
| 817 |
-
border: none !important;
|
| 818 |
-
}
|
| 819 |
-
|
| 820 |
-
.circular-btn:disabled {
|
| 821 |
-
opacity: 0.4 !important;
|
| 822 |
-
cursor: not-allowed !important;
|
| 823 |
-
transform: none !important;
|
| 824 |
-
}
|
| 825 |
-
"""
|
| 826 |
-
|
| 827 |
-
def format_message_html(role, content, show_thinking=True, show_raw=False):
|
| 828 |
-
"""Format a single message as HTML."""
|
| 829 |
-
role_class = "user-message" if role == "user" else "assistant-message"
|
| 830 |
-
role_name = "You" if role == "user" else "SAM-X-1"
|
| 831 |
-
|
| 832 |
-
thinking = ""
|
| 833 |
-
answer = ""
|
| 834 |
-
|
| 835 |
-
if "<think>" in content:
|
| 836 |
-
parts = content.split("<think>", 1)
|
| 837 |
-
before_think = parts[0].strip()
|
| 838 |
-
|
| 839 |
-
if len(parts) > 1:
|
| 840 |
-
after_think = parts[1]
|
| 841 |
-
|
| 842 |
-
if "</think>" in after_think:
|
| 843 |
-
think_parts = after_think.split("</think>", 1)
|
| 844 |
-
thinking = think_parts[0].strip()
|
| 845 |
-
answer = (before_think + " " + think_parts[1]).strip()
|
| 846 |
-
elif "<think/>" in after_think:
|
| 847 |
-
think_parts = after_think.split("<think/>", 1)
|
| 848 |
-
thinking = think_parts[0].strip()
|
| 849 |
-
answer = (before_think + " " + think_parts[1]).strip()
|
| 850 |
-
else:
|
| 851 |
-
thinking = after_think.strip()
|
| 852 |
-
answer = before_think
|
| 853 |
-
else:
|
| 854 |
-
answer = before_think
|
| 855 |
-
else:
|
| 856 |
-
answer = content
|
| 857 |
-
|
| 858 |
-
html = f'<div class="{role_class}">'
|
| 859 |
-
html += f'<div class="message-header">{role_name}</div>'
|
| 860 |
-
html += f'<div class="message-content">'
|
| 861 |
-
|
| 862 |
-
if thinking and show_thinking:
|
| 863 |
-
html += f'<div class="thinking-content">💭 {thinking}</div>'
|
| 864 |
-
|
| 865 |
-
if answer:
|
| 866 |
-
html += f'<div>{answer}</div>'
|
| 867 |
-
|
| 868 |
-
# Add raw response debug view
|
| 869 |
-
if show_raw and role == "assistant":
|
| 870 |
-
# Escape HTML and show special tokens
|
| 871 |
-
raw_content = content.replace("<", "<").replace(">", ">")
|
| 872 |
-
raw_content = raw_content.replace("<endoftext>", '<span style="background: #fef3c7; color: #92400e; padding: 2px 6px; border-radius: 3px; font-weight: bold;">⚠️ <endoftext></span>')
|
| 873 |
-
raw_content = raw_content.replace("<think>", '<span style="background: #dbeafe; color: #1e40af; padding: 2px 6px; border-radius: 3px;">🤔 <think></span>')
|
| 874 |
-
raw_content = raw_content.replace("</think>", '<span style="background: #dbeafe; color: #1e40af; padding: 2px 6px; border-radius: 3px;">✅ </think></span>')
|
| 875 |
-
raw_content = raw_content.replace("<think/>", '<span style="background: #dbeafe; color: #1e40af; padding: 2px 6px; border-radius: 3px;">✅ <think/></span>')
|
| 876 |
-
|
| 877 |
-
html += f'''
|
| 878 |
-
<div style="margin-top: 12px; padding: 12px; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 6px; font-family: monospace; font-size: 12px; color: #374151;">
|
| 879 |
-
<div style="font-weight: 600; margin-bottom: 6px; color: #6b7280;">🔍 Raw Response (Debug):</div>
|
| 880 |
-
<div style="white-space: pre-wrap; word-break: break-all;">{raw_content}</div>
|
| 881 |
-
</div>
|
| 882 |
-
'''
|
| 883 |
-
|
| 884 |
-
html += '</div></div>'
|
| 885 |
-
return html
|
| 886 |
-
|
| 887 |
-
def render_history(history, show_thinking, show_raw=False):
|
| 888 |
-
"""Render chat history as HTML."""
|
| 889 |
-
html = ""
|
| 890 |
-
for msg in history:
|
| 891 |
-
html += format_message_html(msg["role"], msg["content"], show_thinking, show_raw)
|
| 892 |
-
return html
|
| 893 |
-
|
| 894 |
-
# ==============================================================================
|
| 895 |
-
# Simplified send_message handler with separate buttons
|
| 896 |
-
# ==============================================================================
|
| 897 |
-
def send_message(message, show_thinking, temperature, model_choice, max_tokens, show_raw):
|
| 898 |
-
global stop_generation
|
| 899 |
-
stop_generation.clear()
|
| 900 |
-
|
| 901 |
-
if not message.strip():
|
| 902 |
-
return "", "", "⚡ 0.0 tok/s", gr.update(interactive=True), gr.update(interactive=False)
|
| 903 |
-
|
| 904 |
-
# Disable send button, enable stop button
|
| 905 |
-
yield "", "", "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 906 |
-
|
| 907 |
-
# Switch backend based on selection (or auto-select)
|
| 908 |
-
if model_choice == "🤖 Auto (Smart Selection)":
|
| 909 |
-
backend = select_model_auto(message, available_models)
|
| 910 |
-
model_name = backend.get_name()
|
| 911 |
-
yield "", f"<div style='background: #dbeafe; padding: 12px; border-radius: 8px; margin: 8px 0; border-left: 3px solid #3b82f6;'><strong>🤖 Auto-selected:</strong> {model_name}</div>", "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 912 |
-
else:
|
| 913 |
-
backend = available_models[model_choice]
|
| 914 |
-
|
| 915 |
-
# Create single-turn history
|
| 916 |
-
history = [{"role": "user", "content": message}]
|
| 917 |
-
|
| 918 |
-
# Show user message immediately
|
| 919 |
-
yield "", render_history(history, show_thinking, show_raw), "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 920 |
-
|
| 921 |
-
# Generate prompt (single turn, no history)
|
| 922 |
-
prompt = f"User: {message}\nSam: <think>"
|
| 923 |
-
|
| 924 |
-
# Start assistant message
|
| 925 |
-
history.append({"role": "assistant", "content": "<think>"})
|
| 926 |
-
|
| 927 |
-
# Stream response
|
| 928 |
-
last_tokens_per_sec = 0
|
| 929 |
-
was_stopped = False
|
| 930 |
-
|
| 931 |
-
for chunk_data in generate_response_stream(prompt, temperature, backend, max_tokens):
|
| 932 |
-
if len(chunk_data) == 5: # New format with stopped flag
|
| 933 |
-
new_chunk, in_thinking, tokens_per_sec, avg_tokens_per_sec, stopped = chunk_data
|
| 934 |
-
|
| 935 |
-
if stopped:
|
| 936 |
-
was_stopped = True
|
| 937 |
-
print(" ✅ Generation stopped successfully")
|
| 938 |
-
break
|
| 939 |
-
|
| 940 |
-
if new_chunk: # Only update if there's actual content
|
| 941 |
-
history[-1]["content"] += new_chunk
|
| 942 |
-
|
| 943 |
-
last_tokens_per_sec = avg_tokens_per_sec
|
| 944 |
-
|
| 945 |
-
# Update UI on every chunk - keep stop button enabled
|
| 946 |
-
speed_text = f"⚡ {tokens_per_sec:.1f} tok/s"
|
| 947 |
-
yield "", render_history(history, show_thinking, show_raw), speed_text, gr.update(interactive=False), gr.update(interactive=True)
|
| 948 |
-
|
| 949 |
-
# Final yield - enable send button, disable stop button
|
| 950 |
-
if was_stopped:
|
| 951 |
-
final_speed = f"🛑 Stopped at {last_tokens_per_sec:.1f} tok/s"
|
| 952 |
-
else:
|
| 953 |
-
final_speed = f"✅ {last_tokens_per_sec:.1f} tok/s (avg)"
|
| 954 |
-
|
| 955 |
-
print(f" 📊 Final speed: {final_speed}")
|
| 956 |
-
yield "", render_history(history, show_thinking, show_raw), final_speed, gr.update(interactive=True), gr.update(interactive=False)
|
| 957 |
-
|
| 958 |
-
def stop_generation_handler():
|
| 959 |
-
"""Handle stop button click."""
|
| 960 |
-
global stop_generation
|
| 961 |
-
print(" 🛑 Stop button clicked - setting stop flag")
|
| 962 |
-
stop_generation.set()
|
| 963 |
-
return "🛑 Stopping...", gr.update(interactive=False), gr.update(interactive=False)
|
| 964 |
-
|
| 965 |
-
def clear_chat():
|
| 966 |
-
"""Clear chat and reset UI."""
|
| 967 |
-
return "", "⚡ Ready", gr.update(interactive=True), gr.update(interactive=False)
|
| 968 |
-
|
| 969 |
-
def update_raw_view(history, show_thinking, show_raw):
|
| 970 |
-
"""Update the chat display when raw checkbox is toggled."""
|
| 971 |
-
return render_history(history, show_thinking, show_raw)
|
| 972 |
-
|
| 973 |
-
# Create Gradio interface
|
| 974 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="slate")) as demo:
|
| 975 |
-
# Announcement Banner
|
| 976 |
-
gr.HTML("""
|
| 977 |
-
<div class="announcement-banner">
|
| 978 |
-
🎉 <strong>SAM-X-1 V2.2 IS HERE!</strong> 🚀<br>
|
| 979 |
-
✨ <strong>NEW:</strong> Auto Model Selection - Let AI pick the perfect model for your task!<br>
|
| 980 |
-
⚡ <strong>NEW:</strong> Dynamic Batching - Up to 4x faster UI updates on Nano & Mini!<br>
|
| 981 |
-
🔥 <strong>TRY IT NOW:</strong> Use "Auto" mode and watch it intelligently choose Nano for speed or Large for complexity!<br>
|
| 982 |
-
💎 <strong>Nano & Mini models are BLAZING fast</strong> - Perfect for quick questions and coding tasks!
|
| 983 |
-
</div>
|
| 984 |
-
""")
|
| 985 |
-
|
| 986 |
-
gr.Markdown("# 🤖 SAM-X-1 Fast Chat (No History)")
|
| 987 |
-
|
| 988 |
-
# Settings panel
|
| 989 |
-
with gr.Accordion("⚙️ Settings", open=False):
|
| 990 |
-
with gr.Row():
|
| 991 |
-
model_selector = gr.Dropdown(
|
| 992 |
-
choices=["🤖 Auto (Smart Selection)"] + list(available_models.keys()),
|
| 993 |
-
value="🤖 Auto (Smart Selection)",
|
| 994 |
-
label="Model Selection",
|
| 995 |
-
info="Auto picks the best model for your prompt"
|
| 996 |
-
)
|
| 997 |
-
|
| 998 |
-
max_tokens_slider = gr.Slider(
|
| 999 |
-
minimum=64,
|
| 1000 |
-
maximum=512,
|
| 1001 |
-
value=256,
|
| 1002 |
-
step=64,
|
| 1003 |
-
label="Max Tokens",
|
| 1004 |
-
info="Lower = Faster generation"
|
| 1005 |
-
)
|
| 1006 |
-
|
| 1007 |
-
with gr.Row():
|
| 1008 |
-
temperature_slider = gr.Slider(
|
| 1009 |
-
minimum=0.0,
|
| 1010 |
-
maximum=2.0,
|
| 1011 |
-
value=0.7,
|
| 1012 |
-
step=0.1,
|
| 1013 |
-
label="Temperature",
|
| 1014 |
-
info="Higher = more creative, Lower = more focused"
|
| 1015 |
-
)
|
| 1016 |
-
|
| 1017 |
-
with gr.Row():
|
| 1018 |
-
show_thinking_checkbox = gr.Checkbox(
|
| 1019 |
-
label="Show Thinking Process",
|
| 1020 |
-
value=True,
|
| 1021 |
-
info="Display model's reasoning"
|
| 1022 |
-
)
|
| 1023 |
-
show_raw_checkbox = gr.Checkbox(
|
| 1024 |
-
label="Show Raw Response (Debug)",
|
| 1025 |
-
value=False,
|
| 1026 |
-
info="See all special tokens including <|endoftext|>"
|
| 1027 |
-
)
|
| 1028 |
-
|
| 1029 |
-
# Speed indicator
|
| 1030 |
-
speed_display = gr.Textbox(
|
| 1031 |
-
label="Generation Speed",
|
| 1032 |
-
value="⚡ Ready",
|
| 1033 |
-
interactive=False,
|
| 1034 |
-
elem_classes=["speed-indicator"]
|
| 1035 |
-
)
|
| 1036 |
-
|
| 1037 |
-
# Chat display
|
| 1038 |
-
chat_html = gr.HTML(value="", elem_classes=["chat-container"])
|
| 1039 |
-
|
| 1040 |
-
# Input area with separate send and stop buttons
|
| 1041 |
-
with gr.Row(elem_classes=["input-row"]):
|
| 1042 |
-
msg_input = gr.Textbox(
|
| 1043 |
-
placeholder="Ask me anything...",
|
| 1044 |
-
show_label=False,
|
| 1045 |
-
container=False,
|
| 1046 |
-
scale=8
|
| 1047 |
-
)
|
| 1048 |
-
with gr.Column(scale=1, min_width=120):
|
| 1049 |
-
with gr.Row():
|
| 1050 |
-
send_btn = gr.Button("▶", variant="primary", elem_classes=["circular-btn", "send-btn"], interactive=True)
|
| 1051 |
-
stop_btn = gr.Button("⏹", variant="stop", elem_classes=["circular-btn", "stop-btn"], interactive=False)
|
| 1052 |
-
|
| 1053 |
-
with gr.Row():
|
| 1054 |
-
clear_btn = gr.Button("🗑️ Clear", size="sm")
|
| 1055 |
-
|
| 1056 |
-
gr.Markdown("""
|
| 1057 |
-
### 🎯 Try These Examples with Auto Mode:
|
| 1058 |
-
|
| 1059 |
-
**Simple (→ Nano):**
|
| 1060 |
-
- "Hi, how are you?"
|
| 1061 |
-
- "What is Python?"
|
| 1062 |
-
- "Tell me a joke"
|
| 1063 |
-
|
| 1064 |
-
**Medium (→ Mini):**
|
| 1065 |
-
- "Write a short story about a robot"
|
| 1066 |
-
- "Summarize the benefits of exercise"
|
| 1067 |
-
- "Create a simple Python function to sort a list"
|
| 1068 |
-
|
| 1069 |
-
**Complex (→ Fast):**
|
| 1070 |
-
- "Analyze the differences between procedural and object-oriented programming"
|
| 1071 |
-
- "Compare and contrast democracy and authoritarianism"
|
| 1072 |
-
- "Explain how neural networks learn with backpropagation"
|
| 1073 |
-
|
| 1074 |
-
**Very Hard (→ Large):**
|
| 1075 |
-
- "Prove why the Pythagorean theorem works using geometric reasoning"
|
| 1076 |
-
- "Derive the formula for compound interest step by step"
|
| 1077 |
-
- "Explain the philosophical implications of Gödel's incompleteness theorems"
|
| 1078 |
-
|
| 1079 |
-
### 💡 Speed Optimization Tips:
|
| 1080 |
-
- **Auto mode (Default)**: Balances speed and quality automatically
|
| 1081 |
-
- **Manual Nano**: 30-40 tok/s - Best for simple questions
|
| 1082 |
-
- **Manual Mini**: 20-30 tok/s - Great for most tasks
|
| 1083 |
-
- **Manual Fast**: 15-20 tok/s - Good for complex reasoning
|
| 1084 |
-
- **Manual Large**: 10-15 tok/s - Use only for hardest problems
|
| 1085 |
-
- **Temperature = 0**: Greedy decoding (fastest, deterministic)
|
| 1086 |
-
- **Lower max tokens**: Stop generation earlier
|
| 1087 |
-
|
| 1088 |
-
### ⚡ V2.2 Features:
|
| 1089 |
-
- ✅ **Smart Auto-Selection** - AI picks the right model for your prompt
|
| 1090 |
-
- ✅ **Dynamic Decode Batching** - Adjusts from 2-8 tokens based on speed
|
| 1091 |
-
- ✅ **Faster UI Updates** - Nano batches 8 tokens = 4x smoother experience
|
| 1092 |
-
- ✅ **Complexity Analysis** - Examines length, keywords, code, multi-step questions
|
| 1093 |
-
- ✅ **Instant Stop Button** - Interrupt generation with no delay
|
| 1094 |
-
- ✅ **Debug Mode** - See all special tokens in raw view
|
| 1095 |
-
|
| 1096 |
-
### 🎯 Expected Speed (2vCPU):
|
| 1097 |
-
- **Nano**: 30-40 tok/s (batch: 8) ⚡⚡
|
| 1098 |
-
- **Mini**: 20-30 tok/s (batch: 5) 🚀
|
| 1099 |
-
- **Fast**: 15-20 tok/s (batch: 3) ⚡
|
| 1100 |
-
- **Large**: 10-15 tok/s (batch: 2) 💎
|
| 1101 |
-
|
| 1102 |
-
### 🚀 What's New:
|
| 1103 |
-
- **V2.2**: Auto model selection + Dynamic batching
|
| 1104 |
-
- **V2.1**: Separate Send/Stop buttons + EOS fixes + Debug view
|
| 1105 |
-
- **V2.0**: Multi-model support + Speed optimizations
|
| 1106 |
-
""")
|
| 1107 |
-
|
| 1108 |
-
# Event handlers
|
| 1109 |
-
send_outputs = [msg_input, chat_html, speed_display, send_btn, stop_btn]
|
| 1110 |
-
|
| 1111 |
-
# Send button
|
| 1112 |
-
send_btn.click(
|
| 1113 |
-
send_message,
|
| 1114 |
-
inputs=[msg_input, show_thinking_checkbox, temperature_slider, model_selector, max_tokens_slider, show_raw_checkbox],
|
| 1115 |
-
outputs=send_outputs
|
| 1116 |
-
)
|
| 1117 |
-
|
| 1118 |
-
msg_input.submit(
|
| 1119 |
-
send_message,
|
| 1120 |
-
inputs=[msg_input, show_thinking_checkbox, temperature_slider, model_selector, max_tokens_slider, show_raw_checkbox],
|
| 1121 |
-
outputs=send_outputs
|
| 1122 |
-
)
|
| 1123 |
-
|
| 1124 |
-
# Stop button
|
| 1125 |
-
stop_btn.click(
|
| 1126 |
-
stop_generation_handler,
|
| 1127 |
-
outputs=[speed_display, send_btn, stop_btn]
|
| 1128 |
-
)
|
| 1129 |
-
|
| 1130 |
-
clear_btn.click(
|
| 1131 |
-
clear_chat,
|
| 1132 |
-
outputs=[chat_html, speed_display, send_btn, stop_btn]
|
| 1133 |
-
)
|
| 1134 |
-
|
| 1135 |
-
demo.launch(debug=True, share=True)
|
|
|
|
| 11 |
from abc import ABC, abstractmethod
|
| 12 |
import time
|
| 13 |
import threading
|
| 14 |
+
import hashlib
|
| 15 |
+
import sqlite3
|
| 16 |
+
from datetime import datetime, timedelta
|
| 17 |
+
import pytz
|
| 18 |
|
| 19 |
# ==============================================================================
|
| 20 |
# Performance Optimizations for CPU
|
| 21 |
# ==============================================================================
|
|
|
|
| 22 |
tf.config.threading.set_inter_op_parallelism_threads(1)
|
| 23 |
tf.config.threading.set_intra_op_parallelism_threads(2)
|
|
|
|
|
|
|
| 24 |
tf.config.optimizer.set_jit(True)
|
|
|
|
|
|
|
| 25 |
tf.config.run_functions_eagerly(False)
|
|
|
|
|
|
|
| 26 |
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'
|
| 27 |
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
| 28 |
|
| 29 |
+
# Australian timezone
|
| 30 |
+
AUSTRALIA_TZ = pytz.timezone('Australia/Sydney')
|
| 31 |
+
|
| 32 |
+
# ==============================================================================
|
| 33 |
+
# Database Setup
|
| 34 |
+
# ==============================================================================
|
| 35 |
+
def init_database():
|
| 36 |
+
"""Initialize SQLite database for users and subscriptions."""
|
| 37 |
+
conn = sqlite3.connect('sam_users.db', check_same_thread=False)
|
| 38 |
+
c = conn.cursor()
|
| 39 |
+
|
| 40 |
+
# Users table
|
| 41 |
+
c.execute('''CREATE TABLE IF NOT EXISTS users
|
| 42 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 43 |
+
username TEXT UNIQUE NOT NULL,
|
| 44 |
+
password_hash TEXT NOT NULL,
|
| 45 |
+
email TEXT,
|
| 46 |
+
plan TEXT DEFAULT 'free',
|
| 47 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 48 |
+
is_admin BOOLEAN DEFAULT 0,
|
| 49 |
+
rate_limit_start TIMESTAMP,
|
| 50 |
+
messages_used_nano INTEGER DEFAULT 0,
|
| 51 |
+
messages_used_mini INTEGER DEFAULT 0,
|
| 52 |
+
messages_used_fast INTEGER DEFAULT 0,
|
| 53 |
+
messages_used_large INTEGER DEFAULT 0)''')
|
| 54 |
+
|
| 55 |
+
# Upgrade requests table
|
| 56 |
+
c.execute('''CREATE TABLE IF NOT EXISTS upgrade_requests
|
| 57 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 58 |
+
user_id INTEGER,
|
| 59 |
+
requested_plan TEXT,
|
| 60 |
+
reason TEXT,
|
| 61 |
+
status TEXT DEFAULT 'pending',
|
| 62 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 63 |
+
FOREIGN KEY (user_id) REFERENCES users(id))''')
|
| 64 |
+
|
| 65 |
+
# Usage tracking
|
| 66 |
+
c.execute('''CREATE TABLE IF NOT EXISTS usage_logs
|
| 67 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 68 |
+
user_id INTEGER,
|
| 69 |
+
tokens_used INTEGER,
|
| 70 |
+
model_used TEXT,
|
| 71 |
+
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
| 72 |
+
FOREIGN KEY (user_id) REFERENCES users(id))''')
|
| 73 |
+
|
| 74 |
+
# Create admin account if not exists
|
| 75 |
+
admin_pass = hashlib.sha256("admin123".encode()).hexdigest()
|
| 76 |
+
try:
|
| 77 |
+
c.execute("INSERT INTO users (username, password_hash, email, plan, is_admin) VALUES (?, ?, ?, ?, ?)",
|
| 78 |
+
("admin", admin_pass, "[email protected]", "pro", 1))
|
| 79 |
+
conn.commit()
|
| 80 |
+
print("✅ Admin account created (username: admin, password: admin123)")
|
| 81 |
+
except sqlite3.IntegrityError:
|
| 82 |
+
print("✅ Admin account already exists")
|
| 83 |
+
|
| 84 |
+
conn.commit()
|
| 85 |
+
return conn
|
| 86 |
+
|
| 87 |
+
# Global database connection
|
| 88 |
+
db_conn = init_database()
|
| 89 |
+
db_lock = threading.Lock()
|
| 90 |
+
|
| 91 |
+
# Plan limits with 3-hour rolling window
|
| 92 |
+
PLAN_LIMITS = {
|
| 93 |
+
'free': {
|
| 94 |
+
'nano_messages': -1,
|
| 95 |
+
'mini_messages': -1,
|
| 96 |
+
'fast_messages': 10,
|
| 97 |
+
'large_messages': 8,
|
| 98 |
+
'can_choose_model': False,
|
| 99 |
+
'max_tokens': 256,
|
| 100 |
+
'reset_hours': 3
|
| 101 |
+
},
|
| 102 |
+
'plus': {
|
| 103 |
+
'nano_messages': -1,
|
| 104 |
+
'mini_messages': -1,
|
| 105 |
+
'fast_messages': -1,
|
| 106 |
+
'large_messages': 20,
|
| 107 |
+
'can_choose_model': True,
|
| 108 |
+
'max_tokens': 384,
|
| 109 |
+
'reset_hours': 3
|
| 110 |
+
},
|
| 111 |
+
'pro': {
|
| 112 |
+
'nano_messages': -1,
|
| 113 |
+
'mini_messages': -1,
|
| 114 |
+
'fast_messages': -1,
|
| 115 |
+
'large_messages': -1,
|
| 116 |
+
'can_choose_model': True,
|
| 117 |
+
'max_tokens': 512,
|
| 118 |
+
'reset_hours': 3
|
| 119 |
+
}
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def get_model_type(model_name):
|
| 123 |
+
"""Get model type from model name."""
|
| 124 |
+
if 'Nano' in model_name:
|
| 125 |
+
return 'nano'
|
| 126 |
+
elif 'Mini' in model_name:
|
| 127 |
+
return 'mini'
|
| 128 |
+
elif 'Fast' in model_name:
|
| 129 |
+
return 'fast'
|
| 130 |
+
elif 'Large' in model_name:
|
| 131 |
+
return 'large'
|
| 132 |
+
return 'nano'
|
| 133 |
+
|
| 134 |
# ==============================================================================
|
| 135 |
+
# User Management Functions
|
| 136 |
+
# ==============================================================================
|
| 137 |
+
def hash_password(password):
|
| 138 |
+
return hashlib.sha256(password.encode()).hexdigest()
|
| 139 |
+
|
| 140 |
+
def create_user(username, password, email=""):
|
| 141 |
+
with db_lock:
|
| 142 |
+
try:
|
| 143 |
+
c = db_conn.cursor()
|
| 144 |
+
now = datetime.now(AUSTRALIA_TZ).isoformat()
|
| 145 |
+
c.execute("INSERT INTO users (username, password_hash, email, rate_limit_start) VALUES (?, ?, ?, ?)",
|
| 146 |
+
(username, hash_password(password), email, now))
|
| 147 |
+
db_conn.commit()
|
| 148 |
+
return True, "Account created successfully!"
|
| 149 |
+
except sqlite3.IntegrityError:
|
| 150 |
+
return False, "Username already exists!"
|
| 151 |
+
|
| 152 |
+
def authenticate_user(username, password):
|
| 153 |
+
with db_lock:
|
| 154 |
+
c = db_conn.cursor()
|
| 155 |
+
c.execute("SELECT id, password_hash, plan, is_admin FROM users WHERE username = ?", (username,))
|
| 156 |
+
result = c.fetchone()
|
| 157 |
+
|
| 158 |
+
if result and result[1] == hash_password(password):
|
| 159 |
+
return True, {"id": result[0], "username": username, "plan": result[2], "is_admin": bool(result[3])}
|
| 160 |
+
return False, None
|
| 161 |
+
|
| 162 |
+
def check_and_reset_limits(user_id):
|
| 163 |
+
"""Check if 3-hour window has passed and reset limits if needed."""
|
| 164 |
+
with db_lock:
|
| 165 |
+
c = db_conn.cursor()
|
| 166 |
+
c.execute("SELECT rate_limit_start, plan FROM users WHERE id = ?", (user_id,))
|
| 167 |
+
result = c.fetchone()
|
| 168 |
+
|
| 169 |
+
if not result:
|
| 170 |
+
return
|
| 171 |
+
|
| 172 |
+
rate_limit_start_str, plan = result
|
| 173 |
+
reset_hours = PLAN_LIMITS[plan]['reset_hours']
|
| 174 |
+
|
| 175 |
+
if rate_limit_start_str:
|
| 176 |
+
rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
|
| 177 |
+
now = datetime.now(AUSTRALIA_TZ)
|
| 178 |
+
|
| 179 |
+
if now - rate_limit_start >= timedelta(hours=reset_hours):
|
| 180 |
+
new_start = now.isoformat()
|
| 181 |
+
c.execute("""UPDATE users
|
| 182 |
+
SET rate_limit_start = ?,
|
| 183 |
+
messages_used_nano = 0,
|
| 184 |
+
messages_used_mini = 0,
|
| 185 |
+
messages_used_fast = 0,
|
| 186 |
+
messages_used_large = 0
|
| 187 |
+
WHERE id = ?""", (new_start, user_id))
|
| 188 |
+
db_conn.commit()
|
| 189 |
+
|
| 190 |
+
def get_user_limits_info(user_id):
|
| 191 |
+
"""Get user's current usage and limits with reset time."""
|
| 192 |
+
check_and_reset_limits(user_id)
|
| 193 |
+
|
| 194 |
+
with db_lock:
|
| 195 |
+
c = db_conn.cursor()
|
| 196 |
+
c.execute("""SELECT plan, rate_limit_start,
|
| 197 |
+
messages_used_nano, messages_used_mini,
|
| 198 |
+
messages_used_fast, messages_used_large
|
| 199 |
+
FROM users WHERE id = ?""", (user_id,))
|
| 200 |
+
result = c.fetchone()
|
| 201 |
+
|
| 202 |
+
if not result:
|
| 203 |
+
return None
|
| 204 |
+
|
| 205 |
+
plan, rate_limit_start_str, nano_used, mini_used, fast_used, large_used = result
|
| 206 |
+
limits = PLAN_LIMITS[plan]
|
| 207 |
+
|
| 208 |
+
if rate_limit_start_str:
|
| 209 |
+
rate_limit_start = datetime.fromisoformat(rate_limit_start_str)
|
| 210 |
+
reset_time = rate_limit_start + timedelta(hours=limits['reset_hours'])
|
| 211 |
+
now = datetime.now(AUSTRALIA_TZ)
|
| 212 |
+
time_until_reset = reset_time - now
|
| 213 |
+
|
| 214 |
+
hours, remainder = divmod(int(time_until_reset.total_seconds()), 3600)
|
| 215 |
+
minutes, seconds = divmod(remainder, 60)
|
| 216 |
+
reset_str = f"{hours}h {minutes}m"
|
| 217 |
+
else:
|
| 218 |
+
reset_str = "N/A"
|
| 219 |
+
|
| 220 |
+
return {
|
| 221 |
+
'plan': plan,
|
| 222 |
+
'nano_used': nano_used,
|
| 223 |
+
'mini_used': mini_used,
|
| 224 |
+
'fast_used': fast_used,
|
| 225 |
+
'large_used': large_used,
|
| 226 |
+
'nano_limit': limits['nano_messages'],
|
| 227 |
+
'mini_limit': limits['mini_messages'],
|
| 228 |
+
'fast_limit': limits['fast_messages'],
|
| 229 |
+
'large_limit': limits['large_messages'],
|
| 230 |
+
'can_choose_model': limits['can_choose_model'],
|
| 231 |
+
'max_tokens': limits['max_tokens'],
|
| 232 |
+
'reset_in': reset_str
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
def can_use_model(user_id, model_name):
|
| 236 |
+
"""Check if user can use a specific model."""
|
| 237 |
+
info = get_user_limits_info(user_id)
|
| 238 |
+
if not info:
|
| 239 |
+
return False, "User not found"
|
| 240 |
+
|
| 241 |
+
model_type = get_model_type(model_name)
|
| 242 |
+
used_key = f"{model_type}_used"
|
| 243 |
+
limit_key = f"{model_type}_limit"
|
| 244 |
+
|
| 245 |
+
used = info[used_key]
|
| 246 |
+
limit = info[limit_key]
|
| 247 |
+
|
| 248 |
+
if limit == -1:
|
| 249 |
+
return True, "OK"
|
| 250 |
+
|
| 251 |
+
if used >= limit:
|
| 252 |
+
return False, f"Limit reached for {model_type.upper()} model ({used}/{limit}). Resets in {info['reset_in']}"
|
| 253 |
+
|
| 254 |
+
return True, "OK"
|
| 255 |
+
|
| 256 |
+
def increment_model_usage(user_id, model_name):
|
| 257 |
+
"""Increment usage counter for a model."""
|
| 258 |
+
model_type = get_model_type(model_name)
|
| 259 |
+
column = f"messages_used_{model_type}"
|
| 260 |
+
|
| 261 |
+
with db_lock:
|
| 262 |
+
c = db_conn.cursor()
|
| 263 |
+
c.execute(f"UPDATE users SET {column} = {column} + 1 WHERE id = ?", (user_id,))
|
| 264 |
+
db_conn.commit()
|
| 265 |
+
|
| 266 |
+
def get_available_models_for_user(user_id):
|
| 267 |
+
"""Get list of models user can currently use."""
|
| 268 |
+
info = get_user_limits_info(user_id)
|
| 269 |
+
if not info:
|
| 270 |
+
return []
|
| 271 |
+
|
| 272 |
+
available = []
|
| 273 |
+
|
| 274 |
+
for model_type in ['nano', 'mini', 'fast', 'large']:
|
| 275 |
+
used = info[f'{model_type}_used']
|
| 276 |
+
limit = info[f'{model_type}_limit']
|
| 277 |
+
|
| 278 |
+
if limit == -1 or used < limit:
|
| 279 |
+
for model_name in available_models.keys():
|
| 280 |
+
if get_model_type(model_name) == model_type:
|
| 281 |
+
available.append(model_name)
|
| 282 |
+
break
|
| 283 |
+
|
| 284 |
+
return available
|
| 285 |
+
|
| 286 |
+
def log_usage(user_id, tokens, model):
|
| 287 |
+
with db_lock:
|
| 288 |
+
c = db_conn.cursor()
|
| 289 |
+
c.execute("INSERT INTO usage_logs (user_id, tokens_used, model_used) VALUES (?, ?, ?)",
|
| 290 |
+
(user_id, tokens, model))
|
| 291 |
+
db_conn.commit()
|
| 292 |
+
|
| 293 |
+
def request_upgrade(user_id, plan, reason):
|
| 294 |
+
with db_lock:
|
| 295 |
+
try:
|
| 296 |
+
c = db_conn.cursor()
|
| 297 |
+
c.execute("INSERT INTO upgrade_requests (user_id, requested_plan, reason) VALUES (?, ?, ?)",
|
| 298 |
+
(user_id, plan, reason))
|
| 299 |
+
db_conn.commit()
|
| 300 |
+
return True, "Upgrade request submitted! Admin will review soon."
|
| 301 |
+
except Exception as e:
|
| 302 |
+
return False, f"Error: {str(e)}"
|
| 303 |
+
|
| 304 |
+
def get_all_users():
|
| 305 |
+
with db_lock:
|
| 306 |
+
c = db_conn.cursor()
|
| 307 |
+
c.execute("""SELECT id, username, email, plan, created_at, is_admin,
|
| 308 |
+
messages_used_nano, messages_used_mini,
|
| 309 |
+
messages_used_fast, messages_used_large,
|
| 310 |
+
rate_limit_start
|
| 311 |
+
FROM users ORDER BY created_at DESC""")
|
| 312 |
+
return c.fetchall()
|
| 313 |
+
|
| 314 |
+
def get_pending_requests():
|
| 315 |
+
with db_lock:
|
| 316 |
+
c = db_conn.cursor()
|
| 317 |
+
c.execute("""SELECT r.id, u.username, r.requested_plan, r.reason, r.created_at
|
| 318 |
+
FROM upgrade_requests r
|
| 319 |
+
JOIN users u ON r.user_id = u.id
|
| 320 |
+
WHERE r.status = 'pending'
|
| 321 |
+
ORDER BY r.created_at DESC""")
|
| 322 |
+
return c.fetchall()
|
| 323 |
+
|
| 324 |
+
def update_user_plan(username, new_plan):
|
| 325 |
+
with db_lock:
|
| 326 |
+
try:
|
| 327 |
+
c = db_conn.cursor()
|
| 328 |
+
now = datetime.now(AUSTRALIA_TZ).isoformat()
|
| 329 |
+
c.execute("""UPDATE users
|
| 330 |
+
SET plan = ?,
|
| 331 |
+
rate_limit_start = ?,
|
| 332 |
+
messages_used_nano = 0,
|
| 333 |
+
messages_used_mini = 0,
|
| 334 |
+
messages_used_fast = 0,
|
| 335 |
+
messages_used_large = 0
|
| 336 |
+
WHERE username = ?""", (new_plan, now, username))
|
| 337 |
+
db_conn.commit()
|
| 338 |
+
return True, f"User {username} upgraded to {new_plan}!"
|
| 339 |
+
except Exception as e:
|
| 340 |
+
return False, f"Error: {str(e)}"
|
| 341 |
+
|
| 342 |
+
def approve_request(request_id):
|
| 343 |
+
with db_lock:
|
| 344 |
+
try:
|
| 345 |
+
c = db_conn.cursor()
|
| 346 |
+
c.execute("SELECT user_id, requested_plan FROM upgrade_requests WHERE id = ?", (request_id,))
|
| 347 |
+
result = c.fetchone()
|
| 348 |
+
|
| 349 |
+
if result:
|
| 350 |
+
user_id, plan = result
|
| 351 |
+
now = datetime.now(AUSTRALIA_TZ).isoformat()
|
| 352 |
+
c.execute("""UPDATE users
|
| 353 |
+
SET plan = ?,
|
| 354 |
+
rate_limit_start = ?,
|
| 355 |
+
messages_used_nano = 0,
|
| 356 |
+
messages_used_mini = 0,
|
| 357 |
+
messages_used_fast = 0,
|
| 358 |
+
messages_used_large = 0
|
| 359 |
+
WHERE id = ?""", (plan, now, user_id))
|
| 360 |
+
c.execute("UPDATE upgrade_requests SET status = 'approved' WHERE id = ?", (request_id,))
|
| 361 |
+
db_conn.commit()
|
| 362 |
+
return True, "Request approved!"
|
| 363 |
+
return False, "Request not found"
|
| 364 |
+
except Exception as e:
|
| 365 |
+
return False, f"Error: {str(e)}"
|
| 366 |
+
|
| 367 |
+
def deny_request(request_id):
|
| 368 |
+
with db_lock:
|
| 369 |
+
try:
|
| 370 |
+
c = db_conn.cursor()
|
| 371 |
+
c.execute("UPDATE upgrade_requests SET status = 'denied' WHERE id = ?", (request_id,))
|
| 372 |
+
db_conn.commit()
|
| 373 |
+
return True, "Request denied"
|
| 374 |
+
except Exception as e:
|
| 375 |
+
return False, f"Error: {str(e)}"
|
| 376 |
+
|
| 377 |
+
# ==============================================================================
|
| 378 |
+
# Model Architecture
|
| 379 |
# ==============================================================================
|
| 380 |
@keras.saving.register_keras_serializable()
|
| 381 |
class RotaryEmbedding(keras.layers.Layer):
|
|
|
|
| 392 |
t = tf.range(self.max_len, dtype=tf.float32)
|
| 393 |
freqs = tf.einsum("i,j->ij", t, inv_freq)
|
| 394 |
emb = tf.concat([freqs, freqs], axis=-1)
|
|
|
|
| 395 |
self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32)
|
| 396 |
self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32)
|
| 397 |
self.built_cache = True
|
|
|
|
| 406 |
dtype = q.dtype
|
| 407 |
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
|
| 408 |
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
|
|
|
|
| 409 |
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
|
| 410 |
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
|
|
|
|
| 411 |
return q_rotated, k_rotated
|
| 412 |
|
| 413 |
def get_config(self):
|
|
|
|
| 415 |
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
|
| 416 |
return config
|
| 417 |
|
|
|
|
| 418 |
@keras.saving.register_keras_serializable()
|
| 419 |
class RMSNorm(keras.layers.Layer):
|
| 420 |
def __init__(self, epsilon=1e-5, **kwargs):
|
|
|
|
| 433 |
config.update({"epsilon": self.epsilon})
|
| 434 |
return config
|
| 435 |
|
|
|
|
| 436 |
@keras.saving.register_keras_serializable()
|
| 437 |
class TransformerBlock(keras.layers.Layer):
|
| 438 |
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
|
|
|
|
| 445 |
self.rope_theta = rope_theta
|
| 446 |
self.head_dim = d_model // n_heads
|
| 447 |
self.layer_idx = layer_idx
|
|
|
|
| 448 |
self.pre_attn_norm = RMSNorm()
|
| 449 |
self.pre_ffn_norm = RMSNorm()
|
|
|
|
| 450 |
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
|
| 451 |
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
|
| 452 |
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
|
| 453 |
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
|
|
|
|
| 454 |
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
|
|
|
|
| 455 |
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
|
| 456 |
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
|
| 457 |
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
|
|
|
|
| 458 |
self.dropout = keras.layers.Dropout(dropout)
|
| 459 |
|
| 460 |
def call(self, x, training=None):
|
| 461 |
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
|
| 462 |
dtype = x.dtype
|
|
|
|
| 463 |
res = x
|
| 464 |
y = self.pre_attn_norm(x)
|
|
|
|
| 465 |
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 466 |
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
| 467 |
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
|
|
|
|
| 468 |
q, k = self.rope(q, k)
|
|
|
|
| 469 |
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
|
| 470 |
+
mask = tf.where(tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0, tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
scores += mask
|
| 472 |
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
|
|
|
|
| 473 |
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
|
| 474 |
x = res + self.dropout(self.out_proj(attn), training=training)
|
|
|
|
| 475 |
res = x
|
| 476 |
y = self.pre_ffn_norm(x)
|
| 477 |
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
|
|
|
|
| 478 |
return res + self.dropout(ffn, training=training)
|
| 479 |
|
| 480 |
def get_config(self):
|
| 481 |
config = super().get_config()
|
| 482 |
+
config.update({"d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim, "dropout": self.dropout_rate, "max_len": self.max_len, "rope_theta":
|
| 483 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
+
# PART 2 - Continue from Part 1
|
| 486 |
+
|
| 487 |
+
self.rope_theta, "layer_idx": self.layer_idx})
|
| 488 |
+
return config
|
| 489 |
|
| 490 |
@keras.saving.register_keras_serializable()
|
| 491 |
class SAM1Model(keras.Model):
|
|
|
|
| 497 |
self.cfg = kwargs
|
| 498 |
else:
|
| 499 |
self.cfg = kwargs.get('cfg', kwargs)
|
|
|
|
| 500 |
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
|
|
|
|
| 501 |
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
|
| 502 |
+
block_args = {'d_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'], 'ff_dim': ff_dim, 'dropout': self.cfg['dropout'], 'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
self.blocks = []
|
| 504 |
for i in range(self.cfg['n_layers']):
|
| 505 |
block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
|
| 506 |
self.blocks.append(block)
|
|
|
|
| 507 |
self.norm = RMSNorm(name="final_norm")
|
| 508 |
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
|
| 509 |
|
| 510 |
def call(self, input_ids, training=None):
|
| 511 |
x = self.embed(input_ids)
|
|
|
|
| 512 |
for block in self.blocks:
|
| 513 |
x = block(x, training=training)
|
|
|
|
| 514 |
return self.lm_head(self.norm(x))
|
| 515 |
|
| 516 |
def get_config(self):
|
|
|
|
| 518 |
base_config['config'] = self.cfg
|
| 519 |
return base_config
|
| 520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
def count_parameters(model):
|
|
|
|
| 522 |
total_params = 0
|
| 523 |
non_zero_params = 0
|
|
|
|
| 524 |
for weight in model.weights:
|
| 525 |
w = weight.numpy()
|
| 526 |
total_params += w.size
|
| 527 |
non_zero_params += np.count_nonzero(w)
|
|
|
|
| 528 |
return total_params, non_zero_params
|
| 529 |
|
|
|
|
| 530 |
def format_param_count(count):
|
|
|
|
| 531 |
if count >= 1e9:
|
| 532 |
return f"{count/1e9:.2f}B"
|
| 533 |
elif count >= 1e6:
|
|
|
|
| 537 |
else:
|
| 538 |
return str(count)
|
| 539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
class ModelBackend(ABC):
|
| 541 |
@abstractmethod
|
| 542 |
def predict(self, input_ids):
|
| 543 |
pass
|
|
|
|
| 544 |
@abstractmethod
|
| 545 |
def get_name(self):
|
| 546 |
pass
|
|
|
|
| 547 |
@abstractmethod
|
| 548 |
def get_info(self):
|
| 549 |
pass
|
| 550 |
|
|
|
|
| 551 |
class KerasBackend(ModelBackend):
|
| 552 |
def __init__(self, model, name, display_name):
|
| 553 |
self.model = model
|
| 554 |
self.name = name
|
| 555 |
self.display_name = display_name
|
| 556 |
+
@tf.function(input_signature=[tf.TensorSpec(shape=[1, None], dtype=tf.int32)], jit_compile=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
def fast_predict(inputs):
|
| 558 |
return model(inputs, training=False)
|
|
|
|
| 559 |
self.fast_predict = fast_predict
|
|
|
|
|
|
|
| 560 |
print(f" 🔥 Warming up {display_name}...")
|
| 561 |
dummy = tf.constant([[1, 2, 3]], dtype=tf.int32)
|
| 562 |
_ = self.fast_predict(dummy)
|
| 563 |
print(f" ✅ Compilation complete!")
|
|
|
|
|
|
|
| 564 |
total, non_zero = count_parameters(model)
|
| 565 |
self.total_params = total
|
| 566 |
self.non_zero_params = non_zero
|
| 567 |
self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0
|
|
|
|
|
|
|
| 568 |
self.n_heads = model.cfg.get('n_heads', 0)
|
| 569 |
self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0))
|
| 570 |
|
|
|
|
| 585 |
info += f" Sparsity: {self.sparsity:.1f}%\n"
|
| 586 |
return info
|
| 587 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
MODEL_REGISTRY = [
|
| 589 |
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
|
| 590 |
("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
|
|
|
|
| 592 |
("SAM-X-1-Nano ⚡⚡", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
|
| 593 |
]
|
| 594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
def estimate_prompt_complexity(prompt):
|
|
|
|
| 596 |
prompt_lower = prompt.lower()
|
|
|
|
|
|
|
| 597 |
complexity_score = 0
|
|
|
|
|
|
|
| 598 |
word_count = len(prompt.split())
|
| 599 |
if word_count > 100:
|
| 600 |
complexity_score += 3
|
|
|
|
| 602 |
complexity_score += 2
|
| 603 |
elif word_count > 20:
|
| 604 |
complexity_score += 1
|
| 605 |
+
hard_keywords = ['analyze', 'explain', 'compare', 'evaluate', 'prove', 'derive', 'calculate', 'solve', 'reason', 'why', 'how does', 'complex', 'algorithm', 'mathematics', 'philosophy', 'theory', 'logic', 'detailed', 'comprehensive', 'thorough', 'in-depth']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
for keyword in hard_keywords:
|
| 607 |
if keyword in prompt_lower:
|
| 608 |
complexity_score += 2
|
| 609 |
+
medium_keywords = ['write', 'create', 'generate', 'summarize', 'describe', 'list', 'what is', 'tell me', 'explain briefly']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
for keyword in medium_keywords:
|
| 611 |
if keyword in prompt_lower:
|
| 612 |
complexity_score += 1
|
|
|
|
|
|
|
| 613 |
if any(word in prompt_lower for word in ['code', 'function', 'program', 'debug', 'implement']):
|
| 614 |
complexity_score += 2
|
|
|
|
|
|
|
| 615 |
if any(word in prompt_lower for word in ['first', 'then', 'next', 'finally', 'step']):
|
| 616 |
complexity_score += 1
|
|
|
|
|
|
|
| 617 |
question_marks = prompt.count('?')
|
| 618 |
if question_marks > 1:
|
| 619 |
complexity_score += 1
|
|
|
|
| 620 |
return complexity_score
|
| 621 |
|
| 622 |
+
def select_model_auto(prompt, available_models_dict, user_available_models):
|
|
|
|
| 623 |
complexity = estimate_prompt_complexity(prompt)
|
| 624 |
+
accessible = {k: v for k, v in available_models_dict.items() if k in user_available_models}
|
| 625 |
+
if not accessible:
|
| 626 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
if complexity <= 2:
|
| 628 |
preferred = "SAM-X-1-Nano ⚡⚡"
|
| 629 |
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
|
|
|
|
| 636 |
else:
|
| 637 |
preferred = "SAM-X-1-Large"
|
| 638 |
fallback_order = ["SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Nano ⚡⚡"]
|
| 639 |
+
if preferred in accessible:
|
| 640 |
+
return accessible[preferred]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
for model_name in fallback_order:
|
| 642 |
+
if model_name in accessible:
|
| 643 |
+
return accessible[model_name]
|
| 644 |
+
return list(accessible.values())[0]
|
|
|
|
|
|
|
|
|
|
| 645 |
|
|
|
|
|
|
|
|
|
|
| 646 |
CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002"
|
|
|
|
| 647 |
print("="*80)
|
| 648 |
print("🤖 SAM-X-1 Multi-Model Chat Interface".center(80))
|
| 649 |
print("="*80)
|
|
|
|
|
|
|
| 650 |
print(f"\n📦 Downloading config/tokenizer from: {CONFIG_TOKENIZER_REPO_ID}")
|
| 651 |
config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json")
|
| 652 |
tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json")
|
|
|
|
|
|
|
| 653 |
with open(config_path, 'r') as f:
|
| 654 |
base_config = json.load(f)
|
|
|
|
| 655 |
print(f"✅ Base config loaded")
|
| 656 |
+
base_model_config = {'vocab_size': base_config['vocab_size'], 'd_model': base_config['hidden_size'], 'n_heads': base_config['num_attention_heads'], 'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'], 'dropout': base_config.get('dropout', 0.0), 'max_len': base_config['max_position_embeddings'], 'rope_theta': base_config['rope_theta'], 'n_layers': base_config['num_hidden_layers']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
print("\n🔤 Recreating tokenizer...")
|
| 658 |
tokenizer = Tokenizer.from_pretrained("gpt2")
|
|
|
|
|
|
|
| 659 |
eos_token = "<|endoftext|>"
|
| 660 |
eos_token_id = tokenizer.token_to_id(eos_token)
|
|
|
|
| 661 |
if eos_token_id is None:
|
|
|
|
| 662 |
tokenizer.add_special_tokens([eos_token])
|
| 663 |
eos_token_id = tokenizer.token_to_id(eos_token)
|
|
|
|
|
|
|
| 664 |
custom_tokens = ["<think>", "<think/>"]
|
| 665 |
for token in custom_tokens:
|
| 666 |
if tokenizer.token_to_id(token) is None:
|
| 667 |
tokenizer.add_special_tokens([token])
|
|
|
|
| 668 |
tokenizer.no_padding()
|
| 669 |
tokenizer.enable_truncation(max_length=base_config['max_position_embeddings'])
|
|
|
|
| 670 |
print(f"✅ Tokenizer ready (vocab size: {tokenizer.get_vocab_size()})")
|
| 671 |
print(f" EOS token: '{eos_token}' (ID: {eos_token_id})")
|
|
|
|
|
|
|
| 672 |
if eos_token_id is None:
|
| 673 |
+
raise ValueError("❌ Failed to set EOS token ID!")
|
|
|
|
|
|
|
| 674 |
print("\n" + "="*80)
|
| 675 |
print("📦 LOADING MODELS".center(80))
|
| 676 |
print("="*80)
|
|
|
|
| 677 |
available_models = {}
|
| 678 |
dummy_input = tf.zeros((1, 1), dtype=tf.int32)
|
|
|
|
| 679 |
for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY:
|
| 680 |
try:
|
| 681 |
print(f"\n⏳ Loading: {display_name}")
|
| 682 |
print(f" Repo: {repo_id}")
|
| 683 |
print(f" Weights: {weights_filename}")
|
|
|
|
|
|
|
| 684 |
weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
|
|
|
|
|
|
| 685 |
if config_filename:
|
| 686 |
print(f" Config: {config_filename}")
|
| 687 |
custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
|
| 688 |
with open(custom_config_path, 'r') as f:
|
| 689 |
model_config = json.load(f)
|
| 690 |
+
print(f" 📐 Custom architecture: {model_config['n_heads']} heads")
|
| 691 |
else:
|
| 692 |
model_config = base_model_config.copy()
|
|
|
|
|
|
|
| 693 |
model = SAM1Model(**model_config)
|
| 694 |
model(dummy_input)
|
| 695 |
model.load_weights(weights_path)
|
| 696 |
model.trainable = False
|
|
|
|
|
|
|
| 697 |
backend = KerasBackend(model, display_name, display_name)
|
| 698 |
available_models[display_name] = backend
|
|
|
|
|
|
|
| 699 |
print(f" ✅ Loaded successfully!")
|
| 700 |
print(f" 📊 Parameters: {format_param_count(backend.total_params)}")
|
|
|
|
|
|
|
|
|
|
| 701 |
except Exception as e:
|
| 702 |
print(f" ⚠️ Failed to load: {e}")
|
|
|
|
|
|
|
| 703 |
if not available_models:
|
| 704 |
+
raise RuntimeError("❌ No models loaded!")
|
|
|
|
| 705 |
print(f"\n✅ Successfully loaded {len(available_models)} model(s)")
|
|
|
|
|
|
|
| 706 |
current_backend = list(available_models.values())[0]
|
|
|
|
|
|
|
| 707 |
stop_generation = threading.Event()
|
| 708 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=256):
|
|
|
|
| 710 |
global stop_generation
|
| 711 |
stop_generation.clear()
|
|
|
|
| 712 |
if backend is None:
|
| 713 |
backend = current_backend
|
|
|
|
|
|
|
| 714 |
encoded_prompt = tokenizer.encode(prompt)
|
| 715 |
input_ids = [i for i in encoded_prompt.ids if i != eos_token_id]
|
| 716 |
generated = input_ids.copy()
|
|
|
|
| 717 |
current_text = ""
|
| 718 |
in_thinking = False
|
|
|
|
|
|
|
| 719 |
max_len = backend.model.cfg['max_len']
|
|
|
|
|
|
|
| 720 |
start_time = time.time()
|
| 721 |
tokens_generated = 0
|
|
|
|
|
|
|
| 722 |
decode_buffer = []
|
| 723 |
+
decode_every = 2
|
| 724 |
last_speed_check = start_time
|
|
|
|
|
|
|
| 725 |
for step in range(max_tokens):
|
|
|
|
| 726 |
if stop_generation.is_set():
|
|
|
|
|
|
|
| 727 |
elapsed = time.time() - start_time
|
| 728 |
final_speed = tokens_generated / elapsed if elapsed > 0 else 0
|
| 729 |
+
yield "", False, -1, final_speed, True
|
| 730 |
return
|
|
|
|
| 731 |
current_input = generated[-max_len:]
|
|
|
|
|
|
|
| 732 |
next_token_logits = backend.predict(current_input)
|
|
|
|
|
|
|
|
|
|
| 733 |
if tokens_generated > 5 and tokens_generated % 10 == 0:
|
| 734 |
current_time = time.time()
|
| 735 |
elapsed_since_check = current_time - last_speed_check
|
| 736 |
if elapsed_since_check > 0:
|
| 737 |
recent_speed = 10 / elapsed_since_check
|
|
|
|
| 738 |
if recent_speed > 25:
|
| 739 |
+
decode_every = 8
|
| 740 |
elif recent_speed > 15:
|
| 741 |
+
decode_every = 5
|
| 742 |
elif recent_speed > 8:
|
| 743 |
+
decode_every = 3
|
| 744 |
else:
|
| 745 |
+
decode_every = 2
|
| 746 |
last_speed_check = current_time
|
|
|
|
| 747 |
if temperature > 0:
|
| 748 |
next_token_logits = next_token_logits / temperature
|
| 749 |
top_k = 5
|
|
|
|
| 755 |
next_token = top_k_indices[np.random.choice(top_k, p=probs)]
|
| 756 |
else:
|
| 757 |
next_token = np.argmax(next_token_logits)
|
|
|
|
|
|
|
| 758 |
if next_token == eos_token_id:
|
|
|
|
| 759 |
break
|
|
|
|
| 760 |
generated.append(int(next_token))
|
| 761 |
decode_buffer.append(int(next_token))
|
| 762 |
tokens_generated += 1
|
| 763 |
+
should_decode = (len(decode_buffer) >= decode_every or step == max_tokens - 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 764 |
if should_decode:
|
| 765 |
new_text = tokenizer.decode(generated[len(input_ids):])
|
| 766 |
if len(new_text) > len(current_text):
|
| 767 |
new_chunk = new_text[len(current_text):]
|
| 768 |
current_text = new_text
|
|
|
|
| 769 |
if "<think>" in new_chunk:
|
| 770 |
in_thinking = True
|
| 771 |
elif "</think>" in new_chunk or "<think/>" in new_chunk:
|
| 772 |
in_thinking = False
|
|
|
|
|
|
|
| 773 |
elapsed = time.time() - start_time
|
| 774 |
tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
|
|
|
|
| 775 |
yield new_chunk, in_thinking, tokens_per_sec, tokens_per_sec, False
|
| 776 |
decode_buffer = []
|
|
|
|
|
|
|
| 777 |
elapsed = time.time() - start_time
|
| 778 |
final_tokens_per_sec = tokens_generated / elapsed if elapsed > 0 else 0
|
| 779 |
yield "", False, final_tokens_per_sec, final_tokens_per_sec, False
|
| 780 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|