Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "prithivMLmods/Radiology-Infer-Mini", torch_dtype="auto", device_map="auto" | |
| ) | |
| processor = AutoProcessor.from_pretrained("prithivMLmods/Radiology-Infer-Mini") | |
| def generate_report(image, text): | |
| # Prepare the message | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cpu") | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| interface = gr.Interface( | |
| fn=generate_report, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Textbox(label="Enter Description/Query", placeholder="Enter your query here..."), | |
| ], | |
| outputs=gr.Textbox(label="Generated Report"), | |
| title="Pter.AI Report Generator", | |
| description="Upload a medical image and provide a description/query to generate a radiology report.", | |
| ) | |
| interface.launch() | |