Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +54 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
|
| 5 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 6 |
+
"prithivMLmods/Radiology-Infer-Mini", torch_dtype="auto", device_map="auto"
|
| 7 |
+
)
|
| 8 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/Radiology-Infer-Mini")
|
| 9 |
+
|
| 10 |
+
def generate_report(image, text):
|
| 11 |
+
# Prepare the message
|
| 12 |
+
messages = [
|
| 13 |
+
{
|
| 14 |
+
"role": "user",
|
| 15 |
+
"content": [
|
| 16 |
+
{"type": "image", "image": image},
|
| 17 |
+
{"type": "text", "text": text},
|
| 18 |
+
],
|
| 19 |
+
}
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 23 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 24 |
+
inputs = processor(
|
| 25 |
+
text=[text],
|
| 26 |
+
images=image_inputs,
|
| 27 |
+
videos=video_inputs,
|
| 28 |
+
padding=True,
|
| 29 |
+
return_tensors="pt",
|
| 30 |
+
)
|
| 31 |
+
inputs = inputs.to("cpu")
|
| 32 |
+
|
| 33 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 34 |
+
generated_ids_trimmed = [
|
| 35 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 36 |
+
]
|
| 37 |
+
output_text = processor.batch_decode(
|
| 38 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
return output_text[0]
|
| 42 |
+
|
| 43 |
+
interface = gr.Interface(
|
| 44 |
+
fn=generate_report,
|
| 45 |
+
inputs=[
|
| 46 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 47 |
+
gr.Textbox(label="Enter Description/Query", placeholder="Enter your query here..."),
|
| 48 |
+
],
|
| 49 |
+
outputs=gr.Textbox(label="Generated Report"),
|
| 50 |
+
title="Pter.AI Report Generator",
|
| 51 |
+
description="Upload a medical image and provide a description/query to generate a radiology report.",
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
requests
|
| 4 |
+
Pillow
|
| 5 |
+
open_clip_torch
|
| 6 |
+
ftfy
|
| 7 |
+
|
| 8 |
+
gradio
|