CTP-Project / app.py
Matthew-J's picture
Updated documentation and comments.
c79916c verified
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import numpy as np
from typing import List, Tuple, Dict, Optional
from huggingface_hub import InferenceClient
# Load the trained model
model = YOLO('best.pt')
# Initialize state structure
def init_user_state() -> Dict:
"""Initialize the user state dictionary."""
return {
'name': '',
'age': None,
'weight_lbs': None,
'height_cm': None,
'gender': '',
'activity_level': '',
'goal': '',
'calorie_target': None,
'cuisine_preference': '',
'detected_ingredients': [],
'ingredient_list_text': ''
}
# BMR & CALORIE CALCULATION
def convert_height_to_cm(height_ft: Optional[float], height_in: Optional[float]) -> Optional[float]:
"""Convert feet and inches to centimeters."""
if height_ft is None or height_in is None:
return None
total_inches = (height_ft * 12) + height_in
return total_inches * 2.54
def calculate_bmr(weight_kg: float, height_cm: float, age: int, gender: str) -> float:
"""
Calculate Basal Metabolic Rate using Mifflin-St Jeor Equation.
BMR (Men) = 10 Γ— weight(kg) + 6.25 Γ— height(cm) - 5 Γ— age(years) + 5
BMR (Women) = 10 Γ— weight(kg) + 6.25 Γ— height(cm) - 5 Γ— age(years) - 161
"""
base_bmr = (10 * weight_kg) + (6.25 * height_cm) - (5 * age)
if gender.lower() == 'male':
bmr = base_bmr + 5
else: # female
bmr = base_bmr - 161
return bmr
def get_activity_multiplier(activity_level: str) -> float:
"""Get activity multiplier based on activity level."""
multipliers = {
'Sedentary': 1.2,
'Light': 1.375,
'Moderate': 1.55,
'Active': 1.725,
'Very Active': 1.9
}
return multipliers.get(activity_level, 1.2)
def get_goal_adjustment(goal: str) -> int:
"""Get calorie adjustment based on goal."""
adjustments = {
'Cutting': -500,
'Maintain': 0,
'Bulking': +500,
'Custom': 0 # Will be handled separately
}
return adjustments.get(goal, 0)
def calculate_calorie_target(
weight_lbs: Optional[float],
height_ft: Optional[float],
height_in: Optional[float],
age: Optional[int],
gender: Optional[str],
activity_level: Optional[str],
goal: Optional[str],
custom_calories: Optional[float],
state: Dict
) -> Tuple[Dict, str]:
"""
Calculate daily calorie target based on user inputs.
Updates state and returns formatted result.
"""
# Validate inputs
if not all([weight_lbs, height_ft is not None, height_in is not None, age, gender, activity_level, goal]):
return state, "**Please fill in all required fields.**"
# Convert weight to kg
weight_kg = weight_lbs * 0.453592
# Convert height to cm
height_cm = convert_height_to_cm(height_ft, height_in)
if height_cm is None:
return state, "**Please enter valid height values.**"
# Calculate BMR
bmr = calculate_bmr(weight_kg, height_cm, age, gender)
# Get activity multiplier
activity_mult = get_activity_multiplier(activity_level)
# Calculate TDEE (Total Daily Energy Expenditure)
tdee = bmr * activity_mult
# Apply goal adjustment
if goal == 'Custom' and custom_calories is not None:
calorie_target = custom_calories
else:
goal_adj = get_goal_adjustment(goal)
calorie_target = tdee + goal_adj
# Update state
state['weight_lbs'] = weight_lbs
state['height_cm'] = height_cm
state['age'] = age
state['gender'] = gender
state['activity_level'] = activity_level
state['goal'] = goal
state['calorie_target'] = calorie_target
# Format output
result_text = f"""
## πŸ“Š Your Daily Calorie Target
**BMR (Basal Metabolic Rate):** {bmr:.0f} calories/day
**Activity Level:** {activity_level} (Γ—{activity_mult:.2f})
**TDEE (Total Daily Energy Expenditure):** {tdee:.0f} calories/day
**Goal Adjustment:** {get_goal_adjustment(goal):+.0f} calories
### 🎯 **Daily Calorie Target: {calorie_target:.0f} calories**
*This target is based on your profile and has been saved for recipe generation.*
"""
return state, result_text
# INGREDIENT DETECTION
def detect_ingredients(images: List, state: Dict) -> Tuple[Dict, List, str]:
"""
Process multiple images and return detected ingredients.
Also updates the state with detected ingredients.
Args:
images: List of uploaded images (file paths)
state: User state dictionary
Returns:
Tuple of (updated_state, processed_images, ingredient_list_text)
"""
if not images or len(images) == 0:
return state, [], "**No images uploaded.**"
processed_images = []
all_detected_items = set()
# Process each uploaded image
for image_file in images:
if image_file is None:
continue
# Get file path (Remeber that Gradio returns file objects)
image_path = image_file.name if hasattr(image_file, 'name') else image_file
# Run prediction with the local settings
results = model.predict(source=image_path, conf=0.7, iou=0.3, verbose=False)
# Get the image with bounding boxes drawn
result_image = results[0].plot()
# Extract detected ingredients from this image
for box in results[0].boxes:
class_id = int(box.cls)
class_name = model.names[class_id]
all_detected_items.add(class_name)
# Convert numpy array to PIL Image for display
# YOLO returns BGR, convert to RGB
if len(result_image.shape) == 3:
result_image_rgb = result_image[..., ::-1] # BGR to RGB
processed_images.append(Image.fromarray(result_image_rgb))
else:
processed_images.append(Image.fromarray(result_image))
# formatted ingredient list
if all_detected_items:
ingredient_list = sorted(list(all_detected_items))
ingredient_list_text = "**Detected Ingredients:**\n\n"
ingredient_list_text += "\n".join([f"β€’ {item.capitalize()}" for item in ingredient_list])
ingredient_list_text += f"\n\n**Total unique items:** {len(ingredient_list)}"
# Update state with detected ingredients for later use
state['detected_ingredients'] = ingredient_list
state['ingredient_list_text'] = ingredient_list_text
else:
ingredient_list_text = "**No ingredients detected.**\n\nTry adjusting the image quality or lighting."
state['detected_ingredients'] = []
state['ingredient_list_text'] = ingredient_list_text
return state, processed_images, ingredient_list_text
# RECIPE GENERATION
def generate_recipes(cuisine_preference: Optional[str], state: Dict) -> Tuple[Dict, str]:
"""
Generate recipes using LLM. All inputs are optional with smart defaults.
"""
# Make everything optional - use defaults if not provided
cuisine_preference = cuisine_preference or "International"
# Get user data with defaults
calorie_target = state.get('calorie_target')
if calorie_target:
calorie_target = int(calorie_target)
else:
calorie_target = 2000 # Default calorie target
goal = state.get('goal', 'Maintain')
ingredients = state.get('detected_ingredients', [])
# Build ingredient list or use default
if ingredients:
ingredient_list = ", ".join([item.capitalize() for item in ingredients])
ingredient_context = f"Use these available ingredients: {ingredient_list}. "
else:
ingredient_list = "common pantry items"
ingredient_context = "Use common, readily available ingredients. "
# Update state
state['cuisine_preference'] = cuisine_preference
# Map goal to dietary focus
goal_descriptions = {
'Cutting': 'weight loss and calorie deficit',
'Maintain': 'maintaining current weight',
'Bulking': 'muscle gain with high protein',
'Custom': 'your custom calorie target'
}
goal_desc = goal_descriptions.get(goal, 'general health and nutrition')
# Build flexible prompt based on available data
prompt = f"""You are a professional nutritionist and chef. Create 3 distinct, detailed recipes that:
1. {ingredient_context}
2. Fit within a daily calorie target of approximately {calorie_target} calories per day
3. Match {cuisine_preference} cuisine style
4. Align with the goal of {goal_desc}
For each recipe, provide:
- Recipe name
- Serving size
- Estimated calories per serving
- Complete ingredient list (you may suggest additional common pantry items if needed)
- Step-by-step cooking instructions
- Nutritional highlights relevant to the goal
Format each recipe clearly with headers. Make the recipes practical, delicious, and suitable for home cooking."""
try:
# Use Hugging Face Inference API
import os
# Try multiple ways to get the token
hf_token = None
# Method 1: Check HF_TOKEN environment variable (Hugging Face Spaces secret)
hf_token = os.getenv("HF_TOKEN", None)
# Method 2: Check HUGGING_FACE_HUB_TOKEN (alternative name)
if not hf_token:
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
# Method 3: Try to get from Hugging Face cache (for Spaces or logged-in users)
if not hf_token:
try:
from huggingface_hub import HfFolder
hf_token = HfFolder.get_token()
except:
pass
# Initialize client with token if available, otherwise try without
if hf_token:
client = InferenceClient(token=hf_token)
else:
# Try without token
client = InferenceClient()
# Try multiple models that work on free tier
#Try chat_completion first, then text_generation as fallback
response = None
last_error = None
successful_model = None
errors_log = []
# List of models to try - simpler models that work on free tier
models_to_try = [
"microsoft/Phi-3-mini-4k-instruct",
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Llama-3.2-3B-Instruct",
"google/flan-t5-xxl", # Simple text generation model
]
for model_name in models_to_try:
# Try chat_completion first
try:
messages = [
{"role": "system", "content": "You are a professional nutritionist and chef. Create detailed, practical recipes with clear formatting."},
{"role": "user", "content": prompt}
]
response_obj = client.chat_completion(
messages=messages,
model=model_name,
max_tokens=1500,
temperature=0.7,
)
# Extract response
if hasattr(response_obj, 'choices') and len(response_obj.choices) > 0:
if hasattr(response_obj.choices[0].message, 'content'):
response = response_obj.choices[0].message.content
else:
response = str(response_obj.choices[0].message)
elif isinstance(response_obj, dict) and 'choices' in response_obj:
response = response_obj['choices'][0]['message']['content']
elif isinstance(response_obj, str):
response = response_obj
else:
response = str(response_obj)
if response and len(response.strip()) > 50: # Make sure we got a real response
successful_model = f"{model_name} (chat_completion)"
break
except Exception as chat_error:
errors_log.append(f"{model_name} (chat): {str(chat_error)[:80]}")
# Try text_generation as fallback for this model
try:
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=1500,
temperature=0.7,
)
if response and len(str(response).strip()) > 50:
successful_model = f"{model_name} (text_generation)"
break
except Exception as text_error:
errors_log.append(f"{model_name} (text): {str(text_error)[:80]}")
last_error = text_error
continue
# If still no response, try one more fallback
if not response:
try:
# Try a very simple model as last resort
response = client.text_generation(
prompt,
model="gpt2", # Should be always available
max_new_tokens=500,
temperature=0.7,
)
successful_model = "gpt2 (fallback)"
except:
pass
# If all models failed, provide an error message
if response is None:
error_msg = f"** Failed to generate recipes.**\n\n"
# Show last error details
if last_error:
error_msg += f"**Last error:** {str(last_error)[:200]}\n\n"
# Show which models were tried
if errors_log:
error_msg += "**Models tried:**\n"
for err in errors_log[:3]: # Show first 3 errors
error_msg += f"- {err}\n"
error_msg += "\n"
if not hf_token:
error_msg += """**πŸ’‘ Setup Required if dulplicated:**
**For Hugging Face Spaces:**
Go to your Space Settings
Scroll to "Repository secrets"
Click **"New secret"**
Value: Your Hugging Face token
Click **"Add secret"** and your Space will rebuild automatically
**For Local Development:**
Set the `HF_TOKEN` environment variable with your Hugging Face token.
Once the token is set, try generating recipes again!"""
else:
error_msg += """**Possible issues:**
- The models may require special access (some models need approval on Hugging Face)
- Your token may not have access to these models (free tier has limitations)
- Models might be routed to external providers that aren't available
- Network connectivity issues
"""
return state, error_msg
# Extract text if response is a formatted object
if hasattr(response, 'generated_text'):
response_text = response.generated_text
elif isinstance(response, str):
response_text = response
else:
response_text = str(response)
# Build profile summary (only show if data exists)
profile_parts = []
if state.get('calorie_target'):
profile_parts.append(f"- Daily Calorie Target: {calorie_target} calories")
if state.get('goal'):
profile_parts.append(f"- Goal: {goal}")
if ingredients:
profile_parts.append(f"- Available Ingredients: {ingredient_list}")
profile_summary = "\n".join(profile_parts) if profile_parts else "- Using default settings (2000 calories, general recipes)"
recipes_text = f"""## 🍳 Recipe Suggestions for {cuisine_preference} Cuisine
**Settings Used:**
{profile_summary}
---
{response_text}
---
*Recipes generated using AI. {"Based on your profile and ingredients." if (state.get('calorie_target') or ingredients) else "Feel free to customize your profile and scan ingredients for more personalized results!"}*"""
return state, recipes_text
except Exception as e:
error_msg = f"""** Error generating recipes.**
Please try again. If the issue persists, you may need to:
1. Check your internet connection
2. Ensure you have a Hugging Face API token set (if required)
3. Try a different cuisine preference
Error details: {str(e)}"""
return state, error_msg
# GRADIO INTERFACE
# Custom CSS -NOTE: Lets add emojis to the Responses and buttons to add more colors without offending the design.
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.description-box {
background: #f8f9fa;
padding: 15px;
border-radius: 8px;
border-left: 4px solid #667eea;
margin-bottom: 20px;
color: #000000 !important;
}
.description-box * {
color: #000000 !important;
}
.ingredient-list {
background: #ffffff;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
min-height: 200px;
color: #000000 !important;
}
.ingredient-list * {
color: #000000 !important;
}
.calorie-result {
background: #e8f5e9;
padding: 20px;
border-radius: 8px;
border-left: 4px solid #4caf50;
margin-top: 20px;
color: #000000 !important;
}
.calorie-result * {
color: #000000 !important;
}
"""
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
# Header - Changed again for CTP showcase.
gr.Markdown(
"""
# πŸ₯— Forked Nutrition
Your AI-powered kitchen companion: Scan ingredients, calculate calories, and generate personalized recipes!
""",
elem_classes=["main-header"]
)
# Initialize state
user_state = gr.State(value=init_user_state)
# Tab structure
with gr.Tabs() as tabs:
# TAB 1: USER PROFILE & GOALS
with gr.Tab("πŸ‘€ User Profile & Goals"):
gr.Markdown(
"""
<div class="description-box">
<strong>πŸ“‹ Set up your profile:</strong><br>
Enter your personal information and fitness goals to calculate your daily calorie target.
This will be used to generate personalized recipes.
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
name_input = gr.Textbox(
label="Name",
placeholder="Enter your name",
value=""
)
with gr.Row():
age_input = gr.Number(
label="Age",
minimum=1,
maximum=120,
value=None,
precision=0
)
gender_input = gr.Dropdown(
label="Gender",
choices=["Male", "Female"],
value=None
)
with gr.Row():
weight_input = gr.Number(
label="Weight (lbs)",
minimum=1,
maximum=1000,
value=None,
precision=1
)
with gr.Row():
height_ft_input = gr.Number(
label="Height (feet)",
minimum=1,
maximum=8,
value=None,
precision=0
)
height_in_input = gr.Number(
label="Height (inches)",
minimum=0,
maximum=11,
value=None,
precision=0
)
activity_input = gr.Dropdown(
label="Activity Level",
choices=["Sedentary", "Light", "Moderate", "Active", "Very Active"],
value=None,
info="Sedentary: Little/no exercise | Light: Light exercise 1-3 days/week | Moderate: Moderate exercise 3-5 days/week | Active: Hard exercise 6-7 days/week | Very Active: Very hard exercise, physical job"
)
goal_input = gr.Radio(
label="Goal",
choices=["Cutting", "Maintain", "Bulking", "Custom"],
value=None
)
custom_calories_input = gr.Number(
label="Custom Calorie Target",
minimum=800,
maximum=5000,
value=None,
precision=0,
visible=False,
info="Enter your desired daily calorie target"
)
calculate_btn = gr.Button(
"πŸ“Š Calculate Calorie Target",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
calorie_output = gr.Markdown(
label="Calorie Calculation Result",
elem_classes=["calorie-result"]
)
# Show/hide custom calories input based on goal selection
def toggle_custom_calories(goal):
if goal == "Custom":
return gr.update(visible=True)
else:
# Reset value to None when hiding to prevent validation errors
return gr.update(visible=False, value=None)
goal_input.change(
fn=toggle_custom_calories,
inputs=goal_input,
outputs=custom_calories_input
)
# Calculate calories
calculate_btn.click(
fn=calculate_calorie_target,
inputs=[
weight_input,
height_ft_input,
height_in_input,
age_input,
gender_input,
activity_input,
goal_input,
custom_calories_input,
user_state
],
outputs=[user_state, calorie_output]
)
# Update name in state when changed
name_input.change(
fn=lambda name, state: ({**state, 'name': name}, state),
inputs=[name_input, user_state],
outputs=[user_state, user_state]
)
# TAB 2: INGREDIENT SCANNER
with gr.Tab("πŸ“Έ Ingredient Scanner"):
gr.Markdown(
"""
<div class="description-box">
<strong>πŸ“Έ How to use:</strong><br>
1. Click "Upload Images" or drag and drop multiple photos<br>
2. Wait for the AI to analyze your ingredients<br>
3. View all processed images with detection boxes and the complete ingredient list<br>
4. Detected ingredients will be saved for recipe generation
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.File(
file_count="multiple",
file_types=["image"],
label="πŸ“ Upload Images",
height=200
)
process_btn = gr.Button(
"πŸ” Detect Ingredients",
variant="primary",
size="lg"
)
gr.Markdown("---")
ingredient_output = gr.Markdown(
label="πŸ“‹ Detected Ingredients",
elem_classes=["ingredient-list"]
)
with gr.Column(scale=2):
gallery_output = gr.Gallery(
label="πŸ–ΌοΈ Processed Images with Detections",
show_label=True,
elem_id="gallery",
columns=2,
rows=2,
height="auto",
allow_preview=True,
preview=True
)
# Process images when button is clicked
process_btn.click(
fn=detect_ingredients,
inputs=[image_input, user_state],
outputs=[user_state, gallery_output, ingredient_output]
)
# Also process when images are uploaded (auto-detect)
image_input.upload(
fn=detect_ingredients,
inputs=[image_input, user_state],
outputs=[user_state, gallery_output, ingredient_output]
)
# TAB 3: RECIPE GENERATOR
with gr.Tab("🍳 Recipe Generator"):
gr.Markdown(
"""
<div class="description-box">
<strong>🍳 Generate personalized recipes:</strong><br>
Generate AI-powered recipes! You can customize with your calorie target, fitness goals, and detected ingredients,
or simply select a cuisine preference to get started right away. Everything is optional!
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
cuisine_input = gr.Dropdown(
label="Cuisine Preference",
choices=["International", "Mexican", "Chinese", "American", "Italian", "Indian", "Japanese", "Mediterranean", "Thai", "French"],
value="International",
info="Select your preferred cuisine style (optional, defaults to International)"
)
generate_btn = gr.Button(
"✨ Generate Recipes",
variant="primary",
size="lg"
)
gr.Markdown("---")
with gr.Column(scale=2):
recipe_output = gr.Markdown(
label="Generated Recipes",
elem_classes=["ingredient-list"]
)
# Generate recipes
generate_btn.click(
fn=generate_recipes,
inputs=[cuisine_input, user_state],
outputs=[user_state, recipe_output]
)
gr.Markdown(
"""
---
<div style="text-align: center; color: #666; padding: 20px;">
<small>Powered by YOLOv11 & AI Recipe Generation | Your smart kitchen assistant!</small>
</div>
"""
)
# Launch the app
if __name__ == "__main__":
demo.launch()