File size: 28,334 Bytes
5fdbf1b
 
ced12a1
4bc7c48
2fb0d1f
 
5fdbf1b
4bc7c48
5fdbf1b
 
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79916c
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79916c
2fb0d1f
 
aab199a
4bc7c48
2fb0d1f
4bc7c48
 
 
2fb0d1f
4bc7c48
 
2fb0d1f
aab199a
4bc7c48
2fb0d1f
4bc7c48
 
 
 
 
 
 
 
9d22386
c79916c
4bc7c48
aab199a
c79916c
4bc7c48
aab199a
4bc7c48
 
 
 
aab199a
4bc7c48
 
 
 
 
 
 
 
ced12a1
4bc7c48
ced12a1
4bc7c48
c79916c
4bc7c48
 
 
 
 
2fb0d1f
c79916c
2fb0d1f
 
4bc7c48
 
2fb0d1f
 
 
 
 
c79916c
2fb0d1f
 
 
ced12a1
2fb0d1f
ced12a1
 
4bc7c48
ced12a1
 
 
 
 
 
 
 
 
2fb0d1f
ced12a1
 
 
 
 
 
 
2fb0d1f
 
 
 
 
 
 
 
 
 
 
ced12a1
2fb0d1f
c79916c
2fb0d1f
 
ced12a1
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced12a1
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
ced12a1
c79916c
ced12a1
 
 
c79916c
ced12a1
2fb0d1f
c79916c
 
2fb0d1f
 
 
ced12a1
 
 
 
 
 
 
 
 
 
2fb0d1f
 
ced12a1
2fb0d1f
ced12a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79916c
ced12a1
 
 
2fb0d1f
 
c79916c
ced12a1
2fb0d1f
 
ced12a1
 
 
2fb0d1f
c79916c
2fb0d1f
c79916c
ced12a1
 
 
 
 
 
 
 
 
 
 
 
2fb0d1f
c79916c
 
ced12a1
 
 
c79916c
 
 
 
 
ced12a1
 
 
 
 
 
 
 
 
 
 
 
c79916c
 
ced12a1
 
2fb0d1f
 
 
 
 
 
 
 
 
ced12a1
 
 
 
 
 
 
 
 
 
 
2fb0d1f
 
ced12a1
 
2fb0d1f
 
 
 
 
 
 
ced12a1
2fb0d1f
 
 
 
c79916c
2fb0d1f
 
 
 
 
 
 
 
 
c79916c
aab199a
c79916c
4bc7c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb0d1f
 
 
 
 
 
 
 
 
4bc7c48
 
 
5fdbf1b
c79916c
4bc7c48
c79916c
4bc7c48
 
c79916c
4bc7c48
2fb0d1f
4bc7c48
 
 
 
2fb0d1f
 
4bc7c48
2fb0d1f
 
c79916c
2fb0d1f
 
 
 
 
 
 
 
 
4bc7c48
 
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc7c48
 
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc7c48
2fb0d1f
 
 
 
 
4bc7c48
 
c79916c
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79916c
2fb0d1f
 
 
 
 
ced12a1
 
2fb0d1f
 
 
 
 
 
 
 
ced12a1
 
 
2fb0d1f
 
 
 
 
 
 
 
 
8c79de8
2fb0d1f
 
 
 
 
 
 
 
 
 
 
 
4bc7c48
aab199a
4bc7c48
 
 
 
2fb0d1f
4bc7c48
 
 
5fdbf1b
4bc7c48
 
2fb0d1f
ced12a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import numpy as np
from typing import List, Tuple, Dict, Optional
from huggingface_hub import InferenceClient

# Load the trained model
model = YOLO('best.pt')

# Initialize state structure
def init_user_state() -> Dict:
    """Initialize the user state dictionary."""
    return {
        'name': '',
        'age': None,
        'weight_lbs': None,
        'height_cm': None,
        'gender': '',
        'activity_level': '',
        'goal': '',
        'calorie_target': None,
        'cuisine_preference': '',
        'detected_ingredients': [],
        'ingredient_list_text': ''
    }

# BMR & CALORIE CALCULATION 

def convert_height_to_cm(height_ft: Optional[float], height_in: Optional[float]) -> Optional[float]:
    """Convert feet and inches to centimeters."""
    if height_ft is None or height_in is None:
        return None
    total_inches = (height_ft * 12) + height_in
    return total_inches * 2.54

def calculate_bmr(weight_kg: float, height_cm: float, age: int, gender: str) -> float:
    """
    Calculate Basal Metabolic Rate using Mifflin-St Jeor Equation.
    
    BMR (Men) = 10 Γ— weight(kg) + 6.25 Γ— height(cm) - 5 Γ— age(years) + 5
    BMR (Women) = 10 Γ— weight(kg) + 6.25 Γ— height(cm) - 5 Γ— age(years) - 161
    """
    base_bmr = (10 * weight_kg) + (6.25 * height_cm) - (5 * age)
    
    if gender.lower() == 'male':
        bmr = base_bmr + 5
    else:  # female
        bmr = base_bmr - 161
    
    return bmr

def get_activity_multiplier(activity_level: str) -> float:
    """Get activity multiplier based on activity level."""
    multipliers = {
        'Sedentary': 1.2,
        'Light': 1.375,
        'Moderate': 1.55,
        'Active': 1.725,
        'Very Active': 1.9
    }
    return multipliers.get(activity_level, 1.2)

def get_goal_adjustment(goal: str) -> int:
    """Get calorie adjustment based on goal."""
    adjustments = {
        'Cutting': -500,
        'Maintain': 0,
        'Bulking': +500,
        'Custom': 0  # Will be handled separately
    }
    return adjustments.get(goal, 0)

def calculate_calorie_target(
    weight_lbs: Optional[float],
    height_ft: Optional[float],
    height_in: Optional[float],
    age: Optional[int],
    gender: Optional[str],
    activity_level: Optional[str],
    goal: Optional[str],
    custom_calories: Optional[float],
    state: Dict
) -> Tuple[Dict, str]:
    """
    Calculate daily calorie target based on user inputs.
    Updates state and returns formatted result.
    """
    # Validate inputs
    if not all([weight_lbs, height_ft is not None, height_in is not None, age, gender, activity_level, goal]):
        return state, "**Please fill in all required fields.**"
    
    # Convert weight to kg
    weight_kg = weight_lbs * 0.453592
    
    # Convert height to cm
    height_cm = convert_height_to_cm(height_ft, height_in)
    if height_cm is None:
        return state, "**Please enter valid height values.**"
    
    # Calculate BMR
    bmr = calculate_bmr(weight_kg, height_cm, age, gender)
    
    # Get activity multiplier
    activity_mult = get_activity_multiplier(activity_level)
    
    # Calculate TDEE (Total Daily Energy Expenditure)
    tdee = bmr * activity_mult
    
    # Apply goal adjustment
    if goal == 'Custom' and custom_calories is not None:
        calorie_target = custom_calories
    else:
        goal_adj = get_goal_adjustment(goal)
        calorie_target = tdee + goal_adj
    
    # Update state
    state['weight_lbs'] = weight_lbs
    state['height_cm'] = height_cm
    state['age'] = age
    state['gender'] = gender
    state['activity_level'] = activity_level
    state['goal'] = goal
    state['calorie_target'] = calorie_target
    
    # Format output
    result_text = f"""
    ## πŸ“Š Your Daily Calorie Target
    
    **BMR (Basal Metabolic Rate):** {bmr:.0f} calories/day
    **Activity Level:** {activity_level} (Γ—{activity_mult:.2f})
    **TDEE (Total Daily Energy Expenditure):** {tdee:.0f} calories/day
    **Goal Adjustment:** {get_goal_adjustment(goal):+.0f} calories
    
    ### 🎯 **Daily Calorie Target: {calorie_target:.0f} calories**
    
    *This target is based on your profile and has been saved for recipe generation.*
    """
    
    return state, result_text

#  INGREDIENT DETECTION 

def detect_ingredients(images: List, state: Dict) -> Tuple[Dict, List, str]:
    """
    Process multiple images and return detected ingredients.
    Also updates the state with detected ingredients.
    
    Args:
        images: List of uploaded images (file paths)
        state: User state dictionary
        
    Returns:
        Tuple of (updated_state, processed_images, ingredient_list_text)
    """
    if not images or len(images) == 0:
        return state, [], "**No images uploaded.**"
    
    processed_images = []
    all_detected_items = set()
    
    # Process each uploaded image
    for image_file in images:
        if image_file is None:
            continue
        
        # Get file path (Remeber that Gradio returns file objects)
        image_path = image_file.name if hasattr(image_file, 'name') else image_file
        
        # Run prediction with the local settings 
        results = model.predict(source=image_path, conf=0.7, iou=0.3, verbose=False)
        
        # Get the image with bounding boxes drawn
        result_image = results[0].plot()
        
        # Extract detected ingredients from this image
        for box in results[0].boxes:
            class_id = int(box.cls)
            class_name = model.names[class_id]
            all_detected_items.add(class_name)
        
        # Convert numpy array to PIL Image for display
        # YOLO returns BGR, convert to RGB
        if len(result_image.shape) == 3:
            result_image_rgb = result_image[..., ::-1]  # BGR to RGB
            processed_images.append(Image.fromarray(result_image_rgb))
        else:
            processed_images.append(Image.fromarray(result_image))
    
    # formatted ingredient list
    if all_detected_items:
        ingredient_list = sorted(list(all_detected_items))
        ingredient_list_text = "**Detected Ingredients:**\n\n"
        ingredient_list_text += "\n".join([f"β€’ {item.capitalize()}" for item in ingredient_list])
        ingredient_list_text += f"\n\n**Total unique items:** {len(ingredient_list)}"
        
        # Update state with detected ingredients for later use
        state['detected_ingredients'] = ingredient_list
        state['ingredient_list_text'] = ingredient_list_text
    else:
        ingredient_list_text = "**No ingredients detected.**\n\nTry adjusting the image quality or lighting."
        state['detected_ingredients'] = []
        state['ingredient_list_text'] = ingredient_list_text
    
    return state, processed_images, ingredient_list_text

#  RECIPE GENERATION 

def generate_recipes(cuisine_preference: Optional[str], state: Dict) -> Tuple[Dict, str]:
    """
    Generate recipes using LLM. All inputs are optional with smart defaults.
    """
    # Make everything optional - use defaults if not provided
    cuisine_preference = cuisine_preference or "International"
    
    # Get user data with defaults
    calorie_target = state.get('calorie_target')
    if calorie_target:
        calorie_target = int(calorie_target)
    else:
        calorie_target = 2000  # Default calorie target
    
    goal = state.get('goal', 'Maintain')
    ingredients = state.get('detected_ingredients', [])
    
    # Build ingredient list or use default
    if ingredients:
        ingredient_list = ", ".join([item.capitalize() for item in ingredients])
        ingredient_context = f"Use these available ingredients: {ingredient_list}. "
    else:
        ingredient_list = "common pantry items"
        ingredient_context = "Use common, readily available ingredients. "
    
    # Update state
    state['cuisine_preference'] = cuisine_preference
    
    # Map goal to dietary focus
    goal_descriptions = {
        'Cutting': 'weight loss and calorie deficit',
        'Maintain': 'maintaining current weight',
        'Bulking': 'muscle gain with high protein',
        'Custom': 'your custom calorie target'
    }
    goal_desc = goal_descriptions.get(goal, 'general health and nutrition')
    
    # Build flexible prompt based on available data
    prompt = f"""You are a professional nutritionist and chef. Create 3 distinct, detailed recipes that:

1. {ingredient_context}
2. Fit within a daily calorie target of approximately {calorie_target} calories per day
3. Match {cuisine_preference} cuisine style
4. Align with the goal of {goal_desc}

For each recipe, provide:
- Recipe name
- Serving size
- Estimated calories per serving
- Complete ingredient list (you may suggest additional common pantry items if needed)
- Step-by-step cooking instructions
- Nutritional highlights relevant to the goal

Format each recipe clearly with headers. Make the recipes practical, delicious, and suitable for home cooking."""

    try:
        # Use Hugging Face Inference API
        import os
        # Try multiple ways to get the token
        hf_token = None
        
        # Method 1: Check HF_TOKEN environment variable (Hugging Face Spaces secret)
        hf_token = os.getenv("HF_TOKEN", None)
        
        # Method 2: Check HUGGING_FACE_HUB_TOKEN (alternative name)
        if not hf_token:
            hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
        
        # Method 3: Try to get from Hugging Face cache (for Spaces or logged-in users)
        if not hf_token:
            try:
                from huggingface_hub import HfFolder
                hf_token = HfFolder.get_token()
            except:
                pass
        
        # Initialize client with token if available, otherwise try without
        
        if hf_token:
            client = InferenceClient(token=hf_token)
        else:
            # Try without token 
            client = InferenceClient()
        
        # Try multiple models that work on free tier
        #Try chat_completion first, then text_generation as fallback
        response = None
        last_error = None
        successful_model = None
        errors_log = []
        
        # List of models to try - simpler models that work on free tier
        models_to_try = [
            "microsoft/Phi-3-mini-4k-instruct",
            "HuggingFaceH4/zephyr-7b-beta", 
            "mistralai/Mistral-7B-Instruct-v0.2",
            "meta-llama/Llama-3.2-3B-Instruct",
            "google/flan-t5-xxl",  # Simple text generation model
        ]
        
        for model_name in models_to_try:
            # Try chat_completion first
            try:
                messages = [
                    {"role": "system", "content": "You are a professional nutritionist and chef. Create detailed, practical recipes with clear formatting."},
                    {"role": "user", "content": prompt}
                ]
                response_obj = client.chat_completion(
                    messages=messages,
                    model=model_name,
                    max_tokens=1500,
                    temperature=0.7,
                )
                # Extract response
                if hasattr(response_obj, 'choices') and len(response_obj.choices) > 0:
                    if hasattr(response_obj.choices[0].message, 'content'):
                        response = response_obj.choices[0].message.content
                    else:
                        response = str(response_obj.choices[0].message)
                elif isinstance(response_obj, dict) and 'choices' in response_obj:
                    response = response_obj['choices'][0]['message']['content']
                elif isinstance(response_obj, str):
                    response = response_obj
                else:
                    response = str(response_obj)
                
                if response and len(response.strip()) > 50:  # Make sure we got a real response
                    successful_model = f"{model_name} (chat_completion)"
                    break
            except Exception as chat_error:
                errors_log.append(f"{model_name} (chat): {str(chat_error)[:80]}")
                
                # Try text_generation as fallback for this model
                try:
                    response = client.text_generation(
                        prompt,
                        model=model_name,
                        max_new_tokens=1500,
                        temperature=0.7,
                    )
                    if response and len(str(response).strip()) > 50:
                        successful_model = f"{model_name} (text_generation)"
                        break
                except Exception as text_error:
                    errors_log.append(f"{model_name} (text): {str(text_error)[:80]}")
                    last_error = text_error
                    continue
        
        # If still no response, try one more fallback
        if not response:
            try:
                # Try a very simple model as last resort
                response = client.text_generation(
                    prompt,
                    model="gpt2",  # Should be always available
                    max_new_tokens=500,
                    temperature=0.7,
                )
                successful_model = "gpt2 (fallback)"
            except:
                pass
        
        # If all models failed, provide an error message
        if response is None:
            error_msg = f"** Failed to generate recipes.**\n\n"
            
            # Show last error details
            if last_error:
                error_msg += f"**Last error:** {str(last_error)[:200]}\n\n"
            
            # Show which models were tried
            if errors_log:
                error_msg += "**Models tried:**\n"
                for err in errors_log[:3]:  # Show first 3 errors
                    error_msg += f"- {err}\n"
                error_msg += "\n"
            
            if not hf_token:
                error_msg += """**πŸ’‘ Setup Required if dulplicated:**



**For Hugging Face Spaces:**
 Go to your Space Settings 
 Scroll to "Repository secrets"
 Click **"New secret"**
 Value: Your Hugging Face token 
 Click **"Add secret"** and your Space will rebuild automatically

**For Local Development:**
Set the `HF_TOKEN` environment variable with your Hugging Face token.

Once the token is set, try generating recipes again!"""
            else:
                error_msg += """**Possible issues:**
- The models may require special access (some models need approval on Hugging Face)
- Your token may not have access to these models (free tier has limitations)
- Models might be routed to external providers that aren't available
- Network connectivity issues


"""
            
            return state, error_msg
        
        # Extract text if response is a formatted object
        if hasattr(response, 'generated_text'):
            response_text = response.generated_text
        elif isinstance(response, str):
            response_text = response
        else:
            response_text = str(response)
        
        # Build profile summary (only show if data exists)
        profile_parts = []
        if state.get('calorie_target'):
            profile_parts.append(f"- Daily Calorie Target: {calorie_target} calories")
        if state.get('goal'):
            profile_parts.append(f"- Goal: {goal}")
        if ingredients:
            profile_parts.append(f"- Available Ingredients: {ingredient_list}")
        
        profile_summary = "\n".join(profile_parts) if profile_parts else "- Using default settings (2000 calories, general recipes)"
        
        recipes_text = f"""## 🍳 Recipe Suggestions for {cuisine_preference} Cuisine

**Settings Used:**
{profile_summary}

---

{response_text}

---

*Recipes generated using AI. {"Based on your profile and ingredients." if (state.get('calorie_target') or ingredients) else "Feel free to customize your profile and scan ingredients for more personalized results!"}*"""
        
        return state, recipes_text
        
    except Exception as e:
        error_msg = f"""** Error generating recipes.**

Please try again. If the issue persists, you may need to:
1. Check your internet connection
2. Ensure you have a Hugging Face API token set (if required)
3. Try a different cuisine preference

Error details: {str(e)}"""
        return state, error_msg

#  GRADIO INTERFACE 

# Custom CSS -NOTE: Lets add emojis to the Responses and buttons to add more colors without offending the design.
custom_css = """
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .main-header {
        text-align: center;
        padding: 20px;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        border-radius: 10px;
        margin-bottom: 20px;
    }
    .description-box {
        background: #f8f9fa;
        padding: 15px;
        border-radius: 8px;
        border-left: 4px solid #667eea;
        margin-bottom: 20px;
        color: #000000 !important;
    }
    .description-box * {
        color: #000000 !important;
    }
    .ingredient-list {
        background: #ffffff;
        padding: 20px;
        border-radius: 8px;
        box-shadow: 0 2px 8px rgba(0,0,0,0.1);
        min-height: 200px;
        color: #000000 !important;
    }
    .ingredient-list * {
        color: #000000 !important;
    }
    .calorie-result {
        background: #e8f5e9;
        padding: 20px;
        border-radius: 8px;
        border-left: 4px solid #4caf50;
        margin-top: 20px;
        color: #000000 !important;
    }
    .calorie-result * {
        color: #000000 !important;
    }
"""

#  Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    # Header - Changed again for CTP showcase.
    gr.Markdown(
        """
        # πŸ₯— Forked Nutrition
        
        Your AI-powered kitchen companion: Scan ingredients, calculate calories, and generate personalized recipes!
        """,
        elem_classes=["main-header"]
    )
    
    # Initialize state
    user_state = gr.State(value=init_user_state)
    
    # Tab structure
    with gr.Tabs() as tabs:
        # TAB 1: USER PROFILE & GOALS
        with gr.Tab("πŸ‘€ User Profile & Goals"):
            gr.Markdown(
                """
                <div class="description-box">
                <strong>πŸ“‹ Set up your profile:</strong><br>
                Enter your personal information and fitness goals to calculate your daily calorie target.
                This will be used to generate personalized recipes.
                </div>
                """
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    name_input = gr.Textbox(
                        label="Name",
                        placeholder="Enter your name",
                        value=""
                    )
                    
                    with gr.Row():
                        age_input = gr.Number(
                            label="Age",
                            minimum=1,
                            maximum=120,
                            value=None,
                            precision=0
                        )
                        
                        gender_input = gr.Dropdown(
                            label="Gender",
                            choices=["Male", "Female"],
                            value=None
                        )
                    
                    with gr.Row():
                        weight_input = gr.Number(
                            label="Weight (lbs)",
                            minimum=1,
                            maximum=1000,
                            value=None,
                            precision=1
                        )
                    
                    with gr.Row():
                        height_ft_input = gr.Number(
                            label="Height (feet)",
                            minimum=1,
                            maximum=8,
                            value=None,
                            precision=0
                        )
                        
                        height_in_input = gr.Number(
                            label="Height (inches)",
                            minimum=0,
                            maximum=11,
                            value=None,
                            precision=0
                        )
                    
                    activity_input = gr.Dropdown(
                        label="Activity Level",
                        choices=["Sedentary", "Light", "Moderate", "Active", "Very Active"],
                        value=None,
                        info="Sedentary: Little/no exercise | Light: Light exercise 1-3 days/week | Moderate: Moderate exercise 3-5 days/week | Active: Hard exercise 6-7 days/week | Very Active: Very hard exercise, physical job"
                    )
                    
                    goal_input = gr.Radio(
                        label="Goal",
                        choices=["Cutting", "Maintain", "Bulking", "Custom"],
                        value=None
                    )
                    
                    custom_calories_input = gr.Number(
                        label="Custom Calorie Target",
                        minimum=800,
                        maximum=5000,
                        value=None,
                        precision=0,
                        visible=False,
                        info="Enter your desired daily calorie target"
                    )
                    
                    calculate_btn = gr.Button(
                        "πŸ“Š Calculate Calorie Target",
                        variant="primary",
                        size="lg"
                    )
                
                with gr.Column(scale=1):
                    calorie_output = gr.Markdown(
                        label="Calorie Calculation Result",
                        elem_classes=["calorie-result"]
                    )
            
            # Show/hide custom calories input based on goal selection
            def toggle_custom_calories(goal):
                if goal == "Custom":
                    return gr.update(visible=True)
                else:
                    # Reset value to None when hiding to prevent validation errors
                    return gr.update(visible=False, value=None)
            
            goal_input.change(
                fn=toggle_custom_calories,
                inputs=goal_input,
                outputs=custom_calories_input
            )
            
            # Calculate calories
            calculate_btn.click(
                fn=calculate_calorie_target,
                inputs=[
                    weight_input,
                    height_ft_input,
                    height_in_input,
                    age_input,
                    gender_input,
                    activity_input,
                    goal_input,
                    custom_calories_input,
                    user_state
                ],
                outputs=[user_state, calorie_output]
            )
            
            # Update name in state when changed
            name_input.change(
                fn=lambda name, state: ({**state, 'name': name}, state),
                inputs=[name_input, user_state],
                outputs=[user_state, user_state]
            )
        
        # TAB 2: INGREDIENT SCANNER 
        with gr.Tab("πŸ“Έ Ingredient Scanner"):
            gr.Markdown(
                """
                <div class="description-box">
                <strong>πŸ“Έ How to use:</strong><br>
                1. Click "Upload Images" or drag and drop multiple photos<br>
                2. Wait for the AI to analyze your ingredients<br>
                3. View all processed images with detection boxes and the complete ingredient list<br>
                4. Detected ingredients will be saved for recipe generation
                </div>
                """
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    image_input = gr.File(
                        file_count="multiple",
                        file_types=["image"],
                        label="πŸ“ Upload Images",
                        height=200
                    )
                    
                    process_btn = gr.Button(
                        "πŸ” Detect Ingredients",
                        variant="primary",
                        size="lg"
                    )
                    
                    gr.Markdown("---")
                    
                    ingredient_output = gr.Markdown(
                        label="πŸ“‹ Detected Ingredients",
                        elem_classes=["ingredient-list"]
                    )
                
                with gr.Column(scale=2):
                    gallery_output = gr.Gallery(
                        label="πŸ–ΌοΈ Processed Images with Detections",
                        show_label=True,
                        elem_id="gallery",
                        columns=2,
                        rows=2,
                        height="auto",
                        allow_preview=True,
                        preview=True
                    )
            
            # Process images when button is clicked
            process_btn.click(
                fn=detect_ingredients,
                inputs=[image_input, user_state],
                outputs=[user_state, gallery_output, ingredient_output]
            )
            
            # Also process when images are uploaded (auto-detect)
            image_input.upload(
                fn=detect_ingredients,
                inputs=[image_input, user_state],
                outputs=[user_state, gallery_output, ingredient_output]
            )
        
        #  TAB 3: RECIPE GENERATOR 
        with gr.Tab("🍳 Recipe Generator"):
            gr.Markdown(
                """
                <div class="description-box">
                <strong>🍳 Generate personalized recipes:</strong><br>
                Generate AI-powered recipes! You can customize with your calorie target, fitness goals, and detected ingredients, 
                or simply select a cuisine preference to get started right away. Everything is optional!
                </div>
                """
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    cuisine_input = gr.Dropdown(
                        label="Cuisine Preference",
                        choices=["International", "Mexican", "Chinese", "American", "Italian", "Indian", "Japanese", "Mediterranean", "Thai", "French"],
                        value="International",
                        info="Select your preferred cuisine style (optional, defaults to International)"
                    )
                    
                    generate_btn = gr.Button(
                        "✨ Generate Recipes",
                        variant="primary",
                        size="lg"
                    )
                    
                    gr.Markdown("---")
                    
                
                with gr.Column(scale=2):
                    recipe_output = gr.Markdown(
                        label="Generated Recipes",
                        elem_classes=["ingredient-list"]
                    )
            
            # Generate recipes
            generate_btn.click(
                fn=generate_recipes,
                inputs=[cuisine_input, user_state],
                outputs=[user_state, recipe_output]
            )
    
    gr.Markdown(
        """
        ---
        <div style="text-align: center; color: #666; padding: 20px;">
        <small>Powered by YOLOv11 & AI Recipe Generation | Your smart kitchen assistant!</small>
        </div>
        """
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()