|
|
import os |
|
|
from huggingface_hub import login, snapshot_download |
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
from PIL import Image |
|
|
from dotenv import load_dotenv |
|
|
import gradio as gr |
|
|
from diffusers import FluxPipeline |
|
|
import torch |
|
|
import spaces |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
snapshot_download("Salesforce/blip-image-captioning-large", timeout=120) |
|
|
snapshot_download("noamrot/FuseCap", timeout=120) |
|
|
snapshot_download("black-forest-labs/FLUX.1-dev", timeout=300) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
if HUGGINGFACE_TOKEN: |
|
|
login(token=HUGGINGFACE_TOKEN) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large", timeout=120) |
|
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", timeout=120).to(device) |
|
|
|
|
|
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap", timeout=120) |
|
|
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap", timeout=120).to(device) |
|
|
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, timeout=300).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet'] |
|
|
patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots'] |
|
|
textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=150) |
|
|
def generate_caption_and_image(image, f, p, d): |
|
|
if image and f and p and d: |
|
|
img = image.convert("RGB") |
|
|
|
|
|
|
|
|
inputs = processor(img, "a picture of ", return_tensors="pt").to(device) |
|
|
out = model2.generate(**inputs, num_beams=3) |
|
|
caption2 = processor1.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250) |
|
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
out = model.generate(**inputs) |
|
|
caption1 = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
prompt = ( |
|
|
f"Design a high-quality, stylish clothing item that combines the essence of {caption1} and {caption2}. " |
|
|
f"Use luxurious {f} fabric with intricate {d} design elements. " |
|
|
f"Incorporate {p} patterns to elevate the garment's aesthetic. " |
|
|
"Ensure sophistication, innovation, and timeless elegance." |
|
|
) |
|
|
|
|
|
|
|
|
result = pipe( |
|
|
prompt, |
|
|
height=1024, |
|
|
width=1024, |
|
|
guidance_scale=3.5, |
|
|
num_inference_steps=50, |
|
|
max_sequence_length=512, |
|
|
generator=torch.Generator('cpu').manual_seed(0) |
|
|
).images[0] |
|
|
|
|
|
return result |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=generate_caption_and_image, |
|
|
inputs=[ |
|
|
gr.Image(type="pil", label="Upload Image"), |
|
|
gr.Radio(fabrics, label="Select Fabric"), |
|
|
gr.Radio(patterns, label="Select Pattern"), |
|
|
gr.Radio(textile_designs, label="Select Textile Design") |
|
|
], |
|
|
outputs=gr.Image(label="Generated Design"), |
|
|
live=True |
|
|
) |
|
|
|
|
|
iface.launch() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|