Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,112 @@
|
|
| 1 |
import os
|
| 2 |
-
from huggingface_hub import login
|
| 3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
-
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 5 |
from PIL import Image
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
-
|
| 8 |
import gradio as gr
|
| 9 |
-
from diffusers import
|
| 10 |
import torch
|
| 11 |
import spaces # Hugging Face Spaces module
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet']
|
| 22 |
patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots']
|
| 23 |
textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting']
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Get Hugging Face Token from environment variable
|
| 29 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 30 |
-
|
| 31 |
-
# Authenticate using the token
|
| 32 |
-
login(token =HUGGINGFACE_TOKEN)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 38 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 39 |
-
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
| 40 |
-
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
| 41 |
-
|
| 42 |
-
from diffusers import FluxPipeline
|
| 43 |
-
|
| 44 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
-
# pipe.to(device)
|
| 51 |
-
|
| 52 |
-
model.to(device)
|
| 53 |
-
pipe.to(device)
|
| 54 |
-
model2.to(device)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
@spaces.GPU(duration=150)
|
| 59 |
def generate_caption_and_image(image, f, p, d):
|
| 60 |
-
if f
|
| 61 |
img = image.convert("RGB")
|
| 62 |
-
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
text = "a picture of "
|
| 74 |
-
inputs = processor(img, text, return_tensors="pt").to(device)
|
| 75 |
-
|
| 76 |
-
out = model2.generate(**inputs, num_beams = 3)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
caption2 = processor1.decode(out[0], skip_special_tokens=True)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
| 84 |
-
inputs = {
|
| 85 |
out = model.generate(**inputs)
|
| 86 |
caption1 = processor.decode(out[0], skip_special_tokens=True)
|
| 87 |
-
prompt = f"Design a high-quality, stylish clothing item that flawlessly combines the essence of {caption1} and {caption2}. The design should emphasize the luxurious feel and practicality of {f} fabric, while integrating intricate {d} textual design elements. Incorporate {p} patterns that elevate the garment's aesthetic, ensuring a harmonious blend of textures and visuals. The final piece should be both sophisticated and innovative, reflecting modern trends while preserving timeless elegance. The design should be bold, wearable, and a true work of art."
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
return None
|
|
|
|
|
|
|
| 102 |
# Gradio UI
|
|
|
|
| 103 |
iface = gr.Interface(
|
| 104 |
fn=generate_caption_and_image,
|
| 105 |
-
inputs=[
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
live=True
|
| 109 |
)
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
from huggingface_hub import login, snapshot_download
|
| 3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
+
from diffusers import FluxPipeline
|
| 8 |
import torch
|
| 9 |
import spaces # Hugging Face Spaces module
|
| 10 |
|
| 11 |
+
# -----------------------
|
| 12 |
+
# Pre-cache models at startup
|
| 13 |
+
# -----------------------
|
| 14 |
+
snapshot_download("Salesforce/blip-image-captioning-large", timeout=120)
|
| 15 |
+
snapshot_download("noamrot/FuseCap", timeout=120)
|
| 16 |
+
snapshot_download("black-forest-labs/FLUX.1-dev", timeout=300)
|
| 17 |
+
|
| 18 |
+
# -----------------------
|
| 19 |
+
# Authentication
|
| 20 |
+
# -----------------------
|
| 21 |
+
load_dotenv()
|
| 22 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 23 |
+
if HUGGINGFACE_TOKEN:
|
| 24 |
+
login(token=HUGGINGFACE_TOKEN)
|
| 25 |
|
| 26 |
+
# -----------------------
|
| 27 |
+
# Load models
|
| 28 |
+
# -----------------------
|
| 29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
|
| 31 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large", timeout=120)
|
| 32 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", timeout=120).to(device)
|
| 33 |
|
| 34 |
+
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap", timeout=120)
|
| 35 |
+
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap", timeout=120).to(device)
|
| 36 |
|
| 37 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, timeout=300).to(device)
|
| 38 |
+
|
| 39 |
+
# -----------------------
|
| 40 |
+
# Options
|
| 41 |
+
# -----------------------
|
| 42 |
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet']
|
| 43 |
patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots']
|
| 44 |
textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting']
|
| 45 |
|
| 46 |
+
# -----------------------
|
| 47 |
+
# Inference Function
|
| 48 |
+
# -----------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
@spaces.GPU(duration=150)
|
| 50 |
def generate_caption_and_image(image, f, p, d):
|
| 51 |
+
if image and f and p and d:
|
| 52 |
img = image.convert("RGB")
|
| 53 |
+
|
| 54 |
+
# Caption with FuseCap
|
| 55 |
+
inputs = processor(img, "a picture of ", return_tensors="pt").to(device)
|
| 56 |
+
out = model2.generate(**inputs, num_beams=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
caption2 = processor1.decode(out[0], skip_special_tokens=True)
|
| 58 |
+
|
| 59 |
+
# Caption with BLIP
|
| 60 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
| 61 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 62 |
out = model.generate(**inputs)
|
| 63 |
caption1 = processor.decode(out[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Compose prompt
|
| 66 |
+
prompt = (
|
| 67 |
+
f"Design a high-quality, stylish clothing item that combines the essence of {caption1} and {caption2}. "
|
| 68 |
+
f"Use luxurious {f} fabric with intricate {d} design elements. "
|
| 69 |
+
f"Incorporate {p} patterns to elevate the garment's aesthetic. "
|
| 70 |
+
"Ensure sophistication, innovation, and timeless elegance."
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Generate image
|
| 74 |
+
result = pipe(
|
| 75 |
+
prompt,
|
| 76 |
+
height=1024,
|
| 77 |
+
width=1024,
|
| 78 |
+
guidance_scale=3.5,
|
| 79 |
+
num_inference_steps=50,
|
| 80 |
+
max_sequence_length=512,
|
| 81 |
+
generator=torch.Generator('cpu').manual_seed(0)
|
| 82 |
+
).images[0]
|
| 83 |
+
|
| 84 |
+
return result
|
| 85 |
return None
|
| 86 |
+
|
| 87 |
+
# -----------------------
|
| 88 |
# Gradio UI
|
| 89 |
+
# -----------------------
|
| 90 |
iface = gr.Interface(
|
| 91 |
fn=generate_caption_and_image,
|
| 92 |
+
inputs=[
|
| 93 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 94 |
+
gr.Radio(fabrics, label="Select Fabric"),
|
| 95 |
+
gr.Radio(patterns, label="Select Pattern"),
|
| 96 |
+
gr.Radio(textile_designs, label="Select Textile Design")
|
| 97 |
+
],
|
| 98 |
+
outputs=gr.Image(label="Generated Design"),
|
| 99 |
live=True
|
| 100 |
)
|
| 101 |
+
|
| 102 |
+
iface.launch()
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
|
| 111 |
|
| 112 |
|