|
|
import random |
|
|
import numpy as np |
|
|
import matplotlib |
|
|
matplotlib.use("Agg") |
|
|
import matplotlib.pyplot as plt |
|
|
from mpl_toolkits.mplot3d import Axes3D |
|
|
from io import BytesIO |
|
|
import base64 |
|
|
from PIL import Image |
|
|
import gradio as gr |
|
|
|
|
|
|
|
|
GRID_SIZE = 8 |
|
|
ACTIONS = ['up', 'down', 'left', 'right'] |
|
|
|
|
|
class CarEnvironment: |
|
|
def __init__(self, obstacles=None, seed=None): |
|
|
self.seed = seed |
|
|
self.reset(obstacles) |
|
|
|
|
|
def reset(self, obstacles=None): |
|
|
if self.seed is not None: |
|
|
random.seed(self.seed) |
|
|
np.random.seed(self.seed) |
|
|
self.car = (0, 0) |
|
|
self.goal = (GRID_SIZE - 1, GRID_SIZE - 1) |
|
|
|
|
|
if obstacles: |
|
|
self.obstacles = obstacles |
|
|
else: |
|
|
|
|
|
obs = set() |
|
|
while len(obs) < int(GRID_SIZE * 1.25): |
|
|
x = random.randint(1, GRID_SIZE - 2) |
|
|
y = random.randint(1, GRID_SIZE - 2) |
|
|
if (x, y) not in [(0,0), self.goal]: |
|
|
obs.add((x,y)) |
|
|
self.obstacles = list(obs) |
|
|
self.steps = 0 |
|
|
return self.car |
|
|
|
|
|
def step(self, action): |
|
|
x, y = self.car |
|
|
if action == 'up' and x > 0: |
|
|
x -= 1 |
|
|
elif action == 'down' and x < GRID_SIZE - 1: |
|
|
x += 1 |
|
|
elif action == 'left' and y > 0: |
|
|
y -= 1 |
|
|
elif action == 'right' and y < GRID_SIZE - 1: |
|
|
y += 1 |
|
|
|
|
|
new_pos = (x, y) |
|
|
self.steps += 1 |
|
|
|
|
|
if new_pos in self.obstacles: |
|
|
reward = -5.0 |
|
|
done = True |
|
|
elif new_pos == self.goal: |
|
|
reward = 10.0 |
|
|
done = True |
|
|
else: |
|
|
reward = -0.1 |
|
|
done = False |
|
|
|
|
|
self.car = new_pos |
|
|
return new_pos, reward, done |
|
|
|
|
|
|
|
|
def q_learning(env, episodes=500, alpha=0.7, gamma=0.95, epsilon=0.1): |
|
|
q_table = np.zeros((GRID_SIZE, GRID_SIZE, len(ACTIONS))) |
|
|
rewards_per_episode = [] |
|
|
for ep in range(episodes): |
|
|
state = env.reset() |
|
|
total = 0.0 |
|
|
done = False |
|
|
steps = 0 |
|
|
while not done and steps < 400: |
|
|
if random.random() < epsilon: |
|
|
action = random.choice(ACTIONS) |
|
|
else: |
|
|
action = ACTIONS[np.argmax(q_table[state[0], state[1]])] |
|
|
|
|
|
next_state, reward, done = env.step(action) |
|
|
ai = ACTIONS.index(action) |
|
|
old = q_table[state[0], state[1], ai] |
|
|
|
|
|
q_table[state[0], state[1], ai] = old + alpha * (reward + gamma * np.max(q_table[next_state[0], next_state[1]]) - old) |
|
|
|
|
|
total += reward |
|
|
state = next_state |
|
|
steps += 1 |
|
|
rewards_per_episode.append(total) |
|
|
return q_table, rewards_per_episode |
|
|
|
|
|
|
|
|
def simulate_path(env, q_table, max_steps=200): |
|
|
state = env.reset() |
|
|
path = [state] |
|
|
done = False |
|
|
steps = 0 |
|
|
while not done and steps < max_steps: |
|
|
action = ACTIONS[np.argmax(q_table[state[0], state[1]])] |
|
|
next_state, _, done = env.step(action) |
|
|
path.append(next_state) |
|
|
state = next_state |
|
|
steps += 1 |
|
|
return path |
|
|
|
|
|
|
|
|
def fig_to_pil(fig, facecolor=None): |
|
|
buf = BytesIO() |
|
|
fig.savefig(buf, format="png", bbox_inches='tight', facecolor=facecolor) |
|
|
plt.close(fig) |
|
|
buf.seek(0) |
|
|
return Image.open(buf).convert("RGBA") |
|
|
|
|
|
def render_frame_3d(path, obstacles, goal, elev=30, azim=45): |
|
|
fig = plt.figure(figsize=(6,6), facecolor="#111111") |
|
|
ax = fig.add_subplot(111, projection="3d") |
|
|
|
|
|
X, Y = np.meshgrid(np.arange(GRID_SIZE+1), np.arange(GRID_SIZE+1)) |
|
|
Z = np.zeros_like(X) |
|
|
ax.plot_surface(X, Y, Z, color='gray', alpha=0.08) |
|
|
|
|
|
for (x,y) in obstacles: |
|
|
ax.bar3d(y, x, 0, 1, 1, 1.8, color='red', alpha=0.9) |
|
|
|
|
|
for (x,y) in path: |
|
|
ax.bar3d(y, x, 0, 1, 1, 0.25, color='deepskyblue', alpha=0.6) |
|
|
|
|
|
car_x, car_y = path[-1] |
|
|
ax.bar3d(car_y, car_x, 0, 1, 1, 0.9, color='gold', alpha=1.0, edgecolor='k') |
|
|
|
|
|
ax.bar3d(goal[1], goal[0], 0, 1, 1, 0.12, color='lime', alpha=1.0) |
|
|
ax.set_xlim( -0.5, GRID_SIZE - 0.5) |
|
|
ax.set_ylim( -0.5, GRID_SIZE - 0.5) |
|
|
ax.set_zlim(0, 3) |
|
|
ax.view_init(elev=elev, azim=azim) |
|
|
ax.set_xticks([]) |
|
|
ax.set_yticks([]) |
|
|
ax.set_zticks([]) |
|
|
ax.set_facecolor("#111111") |
|
|
return fig_to_pil(fig, facecolor="#111111") |
|
|
|
|
|
def render_frame_2d(path, obstacles, goal): |
|
|
fig = plt.figure(figsize=(6,6), facecolor="#111111") |
|
|
ax = fig.add_subplot(111) |
|
|
ax.set_xlim(0, GRID_SIZE) |
|
|
ax.set_ylim(0, GRID_SIZE) |
|
|
ax.set_xticks(np.arange(0.5, GRID_SIZE, 1)) |
|
|
ax.set_yticks(np.arange(0.5, GRID_SIZE, 1)) |
|
|
ax.set_xticklabels([]) |
|
|
ax.set_yticklabels([]) |
|
|
ax.grid(True, color='#2a2a2a', linestyle='--', linewidth=1) |
|
|
ax.set_facecolor("#0f0f0f") |
|
|
|
|
|
for (x,y) in obstacles: |
|
|
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color='crimson')) |
|
|
|
|
|
for (x,y) in path: |
|
|
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color='deepskyblue', alpha=0.6)) |
|
|
|
|
|
car_x, car_y = path[-1] |
|
|
ax.add_patch(plt.Rectangle((car_y, GRID_SIZE-1-car_x), 1, 1, color='gold')) |
|
|
|
|
|
ax.add_patch(plt.Rectangle((goal[1], GRID_SIZE-1-goal[0]), 1, 1, color='lime')) |
|
|
ax.set_title("2D View", color="white") |
|
|
return fig_to_pil(fig, facecolor="#111111") |
|
|
|
|
|
def frames_to_gif(frames, duration_ms=300): |
|
|
|
|
|
|
|
|
buf = BytesIO() |
|
|
|
|
|
frames[0].save(buf, format='GIF', save_all=True, append_images=frames[1:], |
|
|
duration=duration_ms, loop=0, disposal=2, optimize=True) |
|
|
buf.seek(0) |
|
|
return buf.read() |
|
|
|
|
|
def img_bytes_to_datauri(img_bytes, mime='image/gif'): |
|
|
return "data:{};base64,{}".format(mime, base64.b64encode(img_bytes).decode('utf-8')) |
|
|
|
|
|
def plot_reward_curve(rewards): |
|
|
fig = plt.figure(figsize=(6,3), facecolor="#111111") |
|
|
ax = fig.add_subplot(111) |
|
|
ax.plot(rewards, linewidth=1.5) |
|
|
ax.set_xlabel("Episode", color="white") |
|
|
ax.set_ylabel("Total Reward", color="white") |
|
|
ax.set_facecolor("#111111") |
|
|
ax.tick_params(colors="white") |
|
|
fig.tight_layout() |
|
|
return fig_to_pil(fig, facecolor="#111111") |
|
|
|
|
|
|
|
|
def train_agent(episodes, alpha, gamma, epsilon, seed): |
|
|
|
|
|
env = CarEnvironment(seed=seed) |
|
|
q_table, rewards = q_learning(env, episodes=episodes, alpha=alpha, gamma=gamma, epsilon=epsilon) |
|
|
reward_img = plot_reward_curve(rewards) |
|
|
|
|
|
metadata = { |
|
|
"q_table": q_table, |
|
|
"obstacles": env.obstacles.copy(), |
|
|
"goal": env.goal, |
|
|
"seed": seed |
|
|
} |
|
|
|
|
|
buf = BytesIO() |
|
|
reward_img.save(buf, format="PNG") |
|
|
buf.seek(0) |
|
|
reward_datauri = "data:image/png;base64," + base64.b64encode(buf.read()).decode("utf-8") |
|
|
return metadata, reward_datauri, f"Trained for {episodes} episodes. Reward (last): {round(rewards[-1], 2)}" |
|
|
|
|
|
def start_drive(view_mode, speed_ms, rotate_camera, state): |
|
|
|
|
|
if not state: |
|
|
return None, "No trained agent found. Please train the agent first." |
|
|
q_table = state["q_table"] |
|
|
obstacles = state["obstacles"] |
|
|
goal = state["goal"] |
|
|
seed = state.get("seed", None) |
|
|
env = CarEnvironment(obstacles=obstacles, seed=seed) |
|
|
path = simulate_path(env, q_table, max_steps=200) |
|
|
|
|
|
frames = [] |
|
|
|
|
|
base_elev = 30 |
|
|
base_azim = 45 |
|
|
for i in range(1, len(path)+1): |
|
|
subpath = path[:i] |
|
|
if view_mode == "3D": |
|
|
elev = base_elev + (rotate_camera * (i/len(path)) * 10) |
|
|
azim = base_azim + (rotate_camera * (i/len(path)) * 40) |
|
|
frame = render_frame_3d(subpath, obstacles, goal, elev=elev, azim=azim) |
|
|
else: |
|
|
frame = render_frame_2d(subpath, obstacles, goal) |
|
|
frames.append(frame) |
|
|
|
|
|
if len(frames) >= 1: |
|
|
frames.append(frames[-1]) |
|
|
gif_bytes = frames_to_gif(frames, duration_ms=max(50, int(speed_ms))) |
|
|
datauri = img_bytes_to_datauri(gif_bytes, mime='image/gif') |
|
|
info = f"Drive simulated: {len(path)-1} steps. View: {view_mode}. Speed: {speed_ms} ms/frame." |
|
|
return datauri, info |
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet")) as demo: |
|
|
gr.Markdown("""<div style="text-align:center; padding:18px; border-radius:10px; |
|
|
background: linear-gradient(90deg,#0d47a1,#4a148c); color:white"> |
|
|
<h2>🚗 AI Car Navigation Lab — Animated 2D / 3D Demo</h2> |
|
|
<p style="margin:0">Train a tabular Q-learning agent, visualize training, then run an animated drive (GIF)</p> |
|
|
</div>""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### ▶ Training Controls") |
|
|
episodes = gr.Slider(100, 3000, step=100, value=600, label="Training Episodes") |
|
|
alpha = gr.Slider(0.05, 1.0, step=0.05, value=0.7, label="Learning rate α") |
|
|
gamma = gr.Slider(0.1, 0.999, step=0.01, value=0.95, label="Discount factor γ") |
|
|
epsilon = gr.Slider(0.0, 1.0, step=0.05, value=0.15, label="Exploration ε") |
|
|
seed = gr.Number(value=42, label="Random seed (reproducible map)", precision=0) |
|
|
train_btn = gr.Button("🧠 Train Agent", variant="primary") |
|
|
reward_output = gr.Image(label="Reward Curve (training)", interactive=False) |
|
|
train_status = gr.Textbox(label="Training status", interactive=False) |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### ▶ Simulation & Animation") |
|
|
view_mode = gr.Radio(["3D", "2D"], value="3D", label="Visualization Mode") |
|
|
speed_slider = gr.Slider(50, 1000, step=10, value=250, label="Animation Speed (ms per frame)") |
|
|
rotate_cam = gr.Slider(0, 1, step=0.1, value=0.6, label="Subtle camera rotation (3D only)") |
|
|
drive_btn = gr.Button("▶ Start Drive", variant="secondary") |
|
|
gif_output = gr.HTML(label="Animated Drive (GIF)") |
|
|
drive_info = gr.Textbox(label="Simulation info", interactive=False) |
|
|
|
|
|
|
|
|
state = gr.State(value=None) |
|
|
|
|
|
|
|
|
train_btn.click(fn=train_agent, inputs=[episodes, alpha, gamma, epsilon, seed], |
|
|
outputs=[state, reward_output, train_status]) |
|
|
|
|
|
drive_btn.click(fn=start_drive, inputs=[view_mode, speed_slider, rotate_cam, state], |
|
|
outputs=[gif_output, drive_info]) |
|
|
|
|
|
|
|
|
gr.Markdown(""" |
|
|
**Notes:** The agent is tabular Q-learning. Use the sliders to tune hyperparameters. |
|
|
The animation is a GIF generated on-the-fly; download it from the GIF image if you want a clip. |
|
|
""") |
|
|
|
|
|
demo.launch() |
|
|
|