Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,41 @@
|
|
|
|
|
| 1 |
import numpy as np
|
|
|
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
-
from mpl_toolkits.mplot3d import Axes3D
|
| 4 |
-
import gradio as gr
|
| 5 |
from io import BytesIO
|
| 6 |
import base64
|
| 7 |
-
import
|
|
|
|
| 8 |
|
| 9 |
-
# ---------- ENVIRONMENT
|
| 10 |
GRID_SIZE = 8
|
| 11 |
ACTIONS = ['up', 'down', 'left', 'right']
|
| 12 |
|
| 13 |
class CarEnvironment:
|
| 14 |
-
def __init__(self):
|
| 15 |
-
self.
|
|
|
|
| 16 |
|
| 17 |
-
def reset(self):
|
|
|
|
|
|
|
|
|
|
| 18 |
self.car = (0, 0)
|
| 19 |
self.goal = (GRID_SIZE - 1, GRID_SIZE - 1)
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
self.steps = 0
|
| 22 |
return self.car
|
| 23 |
|
|
@@ -36,10 +54,10 @@ class CarEnvironment:
|
|
| 36 |
self.steps += 1
|
| 37 |
|
| 38 |
if new_pos in self.obstacles:
|
| 39 |
-
reward = -5
|
| 40 |
done = True
|
| 41 |
elif new_pos == self.goal:
|
| 42 |
-
reward = 10
|
| 43 |
done = True
|
| 44 |
else:
|
| 45 |
reward = -0.1
|
|
@@ -49,118 +67,225 @@ class CarEnvironment:
|
|
| 49 |
return new_pos, reward, done
|
| 50 |
|
| 51 |
# ---------- Q-LEARNING ----------
|
| 52 |
-
def q_learning(env, episodes=
|
| 53 |
q_table = np.zeros((GRID_SIZE, GRID_SIZE, len(ACTIONS)))
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
for _ in range(episodes):
|
| 57 |
state = env.reset()
|
|
|
|
| 58 |
done = False
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
action = random.choice(ACTIONS)
|
| 62 |
else:
|
| 63 |
action = ACTIONS[np.argmax(q_table[state[0], state[1]])]
|
|
|
|
| 64 |
next_state, reward, done = env.step(action)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
state = next_state
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
|
|
|
| 72 |
state = env.reset()
|
| 73 |
path = [state]
|
| 74 |
done = False
|
| 75 |
-
|
|
|
|
| 76 |
action = ACTIONS[np.argmax(q_table[state[0], state[1]])]
|
| 77 |
next_state, _, done = env.step(action)
|
| 78 |
path.append(next_state)
|
| 79 |
state = next_state
|
|
|
|
| 80 |
return path
|
| 81 |
|
| 82 |
-
# ----------
|
| 83 |
-
def
|
| 84 |
-
fig = plt.figure(figsize=(6, 6))
|
| 85 |
-
|
| 86 |
-
if view == "3D":
|
| 87 |
-
ax = fig.add_subplot(111, projection="3d")
|
| 88 |
-
X, Y = np.meshgrid(np.arange(GRID_SIZE), np.arange(GRID_SIZE))
|
| 89 |
-
Z = np.zeros_like(X)
|
| 90 |
-
ax.plot_surface(X, Y, Z, color='gray', alpha=0.3)
|
| 91 |
-
|
| 92 |
-
# Obstacles
|
| 93 |
-
for (x, y) in obstacles:
|
| 94 |
-
ax.bar3d(y, x, 0, 1, 1, 2, color='red', alpha=0.8)
|
| 95 |
-
|
| 96 |
-
# Path
|
| 97 |
-
for (x, y) in path:
|
| 98 |
-
ax.bar3d(y, x, 0, 1, 1, 0.3, color='dodgerblue', alpha=0.6)
|
| 99 |
-
|
| 100 |
-
# Car (last position)
|
| 101 |
-
car_x, car_y = path[-1]
|
| 102 |
-
ax.bar3d(car_y, car_x, 0, 1, 1, 1, color='yellow', alpha=1.0)
|
| 103 |
-
|
| 104 |
-
# Goal
|
| 105 |
-
ax.bar3d(goal[1], goal[0], 0, 1, 1, 0.1, color='lime', alpha=1.0)
|
| 106 |
-
|
| 107 |
-
ax.set_xlim(0, GRID_SIZE)
|
| 108 |
-
ax.set_ylim(0, GRID_SIZE)
|
| 109 |
-
ax.set_zlim(0, 3)
|
| 110 |
-
ax.set_title("3D Autonomous Car Navigation", fontsize=14, color="white", pad=20)
|
| 111 |
-
ax.set_facecolor("#1a1a1a")
|
| 112 |
-
|
| 113 |
-
else: # 2D View
|
| 114 |
-
ax = fig.add_subplot(111)
|
| 115 |
-
ax.set_xlim(0, GRID_SIZE)
|
| 116 |
-
ax.set_ylim(0, GRID_SIZE)
|
| 117 |
-
ax.set_xticks(range(GRID_SIZE))
|
| 118 |
-
ax.set_yticks(range(GRID_SIZE))
|
| 119 |
-
ax.grid(True, linestyle='--', alpha=0.4)
|
| 120 |
-
ax.set_facecolor("#121212")
|
| 121 |
-
|
| 122 |
-
for (x, y) in obstacles:
|
| 123 |
-
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color="crimson"))
|
| 124 |
-
|
| 125 |
-
for (x, y) in path:
|
| 126 |
-
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color="dodgerblue", alpha=0.4))
|
| 127 |
-
|
| 128 |
-
ax.add_patch(plt.Rectangle((goal[1], GRID_SIZE-1-goal[0]), 1, 1, color="lime"))
|
| 129 |
-
car_x, car_y = path[-1]
|
| 130 |
-
ax.add_patch(plt.Rectangle((car_y, GRID_SIZE-1-car_x), 1, 1, color="gold"))
|
| 131 |
-
|
| 132 |
-
ax.set_title("2D Autonomous Car Path", color="white", fontsize=14)
|
| 133 |
-
|
| 134 |
-
plt.tight_layout()
|
| 135 |
buf = BytesIO()
|
| 136 |
-
|
| 137 |
plt.close(fig)
|
| 138 |
buf.seek(0)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
demo.launch()
|
|
|
|
| 1 |
+
import random
|
| 2 |
import numpy as np
|
| 3 |
+
import matplotlib
|
| 4 |
+
matplotlib.use("Agg") # for headless servers like Hugging Face Spaces
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
+
from mpl_toolkits.mplot3d import Axes3D # noqa: F401
|
|
|
|
| 7 |
from io import BytesIO
|
| 8 |
import base64
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import gradio as gr
|
| 11 |
|
| 12 |
+
# ---------- ENVIRONMENT ----------
|
| 13 |
GRID_SIZE = 8
|
| 14 |
ACTIONS = ['up', 'down', 'left', 'right']
|
| 15 |
|
| 16 |
class CarEnvironment:
|
| 17 |
+
def __init__(self, obstacles=None, seed=None):
|
| 18 |
+
self.seed = seed
|
| 19 |
+
self.reset(obstacles)
|
| 20 |
|
| 21 |
+
def reset(self, obstacles=None):
|
| 22 |
+
if self.seed is not None:
|
| 23 |
+
random.seed(self.seed)
|
| 24 |
+
np.random.seed(self.seed)
|
| 25 |
self.car = (0, 0)
|
| 26 |
self.goal = (GRID_SIZE - 1, GRID_SIZE - 1)
|
| 27 |
+
# deterministic obstacles if provided, else random but reproducible with seed
|
| 28 |
+
if obstacles:
|
| 29 |
+
self.obstacles = obstacles
|
| 30 |
+
else:
|
| 31 |
+
# ensure obstacles don't overlap start/goal
|
| 32 |
+
obs = set()
|
| 33 |
+
while len(obs) < int(GRID_SIZE * 1.25):
|
| 34 |
+
x = random.randint(1, GRID_SIZE - 2)
|
| 35 |
+
y = random.randint(1, GRID_SIZE - 2)
|
| 36 |
+
if (x, y) not in [(0,0), self.goal]:
|
| 37 |
+
obs.add((x,y))
|
| 38 |
+
self.obstacles = list(obs)
|
| 39 |
self.steps = 0
|
| 40 |
return self.car
|
| 41 |
|
|
|
|
| 54 |
self.steps += 1
|
| 55 |
|
| 56 |
if new_pos in self.obstacles:
|
| 57 |
+
reward = -5.0
|
| 58 |
done = True
|
| 59 |
elif new_pos == self.goal:
|
| 60 |
+
reward = 10.0
|
| 61 |
done = True
|
| 62 |
else:
|
| 63 |
reward = -0.1
|
|
|
|
| 67 |
return new_pos, reward, done
|
| 68 |
|
| 69 |
# ---------- Q-LEARNING ----------
|
| 70 |
+
def q_learning(env, episodes=500, alpha=0.7, gamma=0.95, epsilon=0.1):
|
| 71 |
q_table = np.zeros((GRID_SIZE, GRID_SIZE, len(ACTIONS)))
|
| 72 |
+
rewards_per_episode = []
|
| 73 |
+
for ep in range(episodes):
|
|
|
|
| 74 |
state = env.reset()
|
| 75 |
+
total = 0.0
|
| 76 |
done = False
|
| 77 |
+
steps = 0
|
| 78 |
+
while not done and steps < 400:
|
| 79 |
+
if random.random() < epsilon:
|
| 80 |
action = random.choice(ACTIONS)
|
| 81 |
else:
|
| 82 |
action = ACTIONS[np.argmax(q_table[state[0], state[1]])]
|
| 83 |
+
|
| 84 |
next_state, reward, done = env.step(action)
|
| 85 |
+
ai = ACTIONS.index(action)
|
| 86 |
+
old = q_table[state[0], state[1], ai]
|
| 87 |
+
# Temporal difference update (Q-learning)
|
| 88 |
+
q_table[state[0], state[1], ai] = old + alpha * (reward + gamma * np.max(q_table[next_state[0], next_state[1]]) - old)
|
| 89 |
+
|
| 90 |
+
total += reward
|
| 91 |
state = next_state
|
| 92 |
+
steps += 1
|
| 93 |
+
rewards_per_episode.append(total)
|
| 94 |
+
return q_table, rewards_per_episode
|
| 95 |
|
| 96 |
+
# ---------- SIMULATION / PATH ----------
|
| 97 |
+
def simulate_path(env, q_table, max_steps=200):
|
| 98 |
state = env.reset()
|
| 99 |
path = [state]
|
| 100 |
done = False
|
| 101 |
+
steps = 0
|
| 102 |
+
while not done and steps < max_steps:
|
| 103 |
action = ACTIONS[np.argmax(q_table[state[0], state[1]])]
|
| 104 |
next_state, _, done = env.step(action)
|
| 105 |
path.append(next_state)
|
| 106 |
state = next_state
|
| 107 |
+
steps += 1
|
| 108 |
return path
|
| 109 |
|
| 110 |
+
# ---------- RENDER HELPERS ----------
|
| 111 |
+
def fig_to_pil(fig, facecolor=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
buf = BytesIO()
|
| 113 |
+
fig.savefig(buf, format="png", bbox_inches='tight', facecolor=facecolor)
|
| 114 |
plt.close(fig)
|
| 115 |
buf.seek(0)
|
| 116 |
+
return Image.open(buf).convert("RGBA")
|
| 117 |
+
|
| 118 |
+
def render_frame_3d(path, obstacles, goal, elev=30, azim=45):
|
| 119 |
+
fig = plt.figure(figsize=(6,6), facecolor="#111111")
|
| 120 |
+
ax = fig.add_subplot(111, projection="3d")
|
| 121 |
+
# floor
|
| 122 |
+
X, Y = np.meshgrid(np.arange(GRID_SIZE+1), np.arange(GRID_SIZE+1))
|
| 123 |
+
Z = np.zeros_like(X)
|
| 124 |
+
ax.plot_surface(X, Y, Z, color='gray', alpha=0.08)
|
| 125 |
+
# obstacles
|
| 126 |
+
for (x,y) in obstacles:
|
| 127 |
+
ax.bar3d(y, x, 0, 1, 1, 1.8, color='red', alpha=0.9)
|
| 128 |
+
# path bars (lower)
|
| 129 |
+
for (x,y) in path:
|
| 130 |
+
ax.bar3d(y, x, 0, 1, 1, 0.25, color='deepskyblue', alpha=0.6)
|
| 131 |
+
# car (top)
|
| 132 |
+
car_x, car_y = path[-1]
|
| 133 |
+
ax.bar3d(car_y, car_x, 0, 1, 1, 0.9, color='gold', alpha=1.0, edgecolor='k')
|
| 134 |
+
# goal
|
| 135 |
+
ax.bar3d(goal[1], goal[0], 0, 1, 1, 0.12, color='lime', alpha=1.0)
|
| 136 |
+
ax.set_xlim( -0.5, GRID_SIZE - 0.5)
|
| 137 |
+
ax.set_ylim( -0.5, GRID_SIZE - 0.5)
|
| 138 |
+
ax.set_zlim(0, 3)
|
| 139 |
+
ax.view_init(elev=elev, azim=azim)
|
| 140 |
+
ax.set_xticks([])
|
| 141 |
+
ax.set_yticks([])
|
| 142 |
+
ax.set_zticks([])
|
| 143 |
+
ax.set_facecolor("#111111")
|
| 144 |
+
return fig_to_pil(fig, facecolor="#111111")
|
| 145 |
+
|
| 146 |
+
def render_frame_2d(path, obstacles, goal):
|
| 147 |
+
fig = plt.figure(figsize=(6,6), facecolor="#111111")
|
| 148 |
+
ax = fig.add_subplot(111)
|
| 149 |
+
ax.set_xlim(0, GRID_SIZE)
|
| 150 |
+
ax.set_ylim(0, GRID_SIZE)
|
| 151 |
+
ax.set_xticks(np.arange(0.5, GRID_SIZE, 1))
|
| 152 |
+
ax.set_yticks(np.arange(0.5, GRID_SIZE, 1))
|
| 153 |
+
ax.set_xticklabels([])
|
| 154 |
+
ax.set_yticklabels([])
|
| 155 |
+
ax.grid(True, color='#2a2a2a', linestyle='--', linewidth=1)
|
| 156 |
+
ax.set_facecolor("#0f0f0f")
|
| 157 |
+
# draw obstacles
|
| 158 |
+
for (x,y) in obstacles:
|
| 159 |
+
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color='crimson'))
|
| 160 |
+
# draw path
|
| 161 |
+
for (x,y) in path:
|
| 162 |
+
ax.add_patch(plt.Rectangle((y, GRID_SIZE-1-x), 1, 1, color='deepskyblue', alpha=0.6))
|
| 163 |
+
# car
|
| 164 |
+
car_x, car_y = path[-1]
|
| 165 |
+
ax.add_patch(plt.Rectangle((car_y, GRID_SIZE-1-car_x), 1, 1, color='gold'))
|
| 166 |
+
# goal
|
| 167 |
+
ax.add_patch(plt.Rectangle((goal[1], GRID_SIZE-1-goal[0]), 1, 1, color='lime'))
|
| 168 |
+
ax.set_title("2D View", color="white")
|
| 169 |
+
return fig_to_pil(fig, facecolor="#111111")
|
| 170 |
+
|
| 171 |
+
def frames_to_gif(frames, duration_ms=300):
|
| 172 |
+
# frames: list of PIL.Image
|
| 173 |
+
# duration_ms per frame
|
| 174 |
+
buf = BytesIO()
|
| 175 |
+
# convert to P mode for smaller size & better GIF compatibility
|
| 176 |
+
frames[0].save(buf, format='GIF', save_all=True, append_images=frames[1:],
|
| 177 |
+
duration=duration_ms, loop=0, disposal=2, optimize=True)
|
| 178 |
+
buf.seek(0)
|
| 179 |
+
return buf.read()
|
| 180 |
+
|
| 181 |
+
def img_bytes_to_datauri(img_bytes, mime='image/gif'):
|
| 182 |
+
return "data:{};base64,{}".format(mime, base64.b64encode(img_bytes).decode('utf-8'))
|
| 183 |
+
|
| 184 |
+
def plot_reward_curve(rewards):
|
| 185 |
+
fig = plt.figure(figsize=(6,3), facecolor="#111111")
|
| 186 |
+
ax = fig.add_subplot(111)
|
| 187 |
+
ax.plot(rewards, linewidth=1.5)
|
| 188 |
+
ax.set_xlabel("Episode", color="white")
|
| 189 |
+
ax.set_ylabel("Total Reward", color="white")
|
| 190 |
+
ax.set_facecolor("#111111")
|
| 191 |
+
ax.tick_params(colors="white")
|
| 192 |
+
fig.tight_layout()
|
| 193 |
+
return fig_to_pil(fig, facecolor="#111111")
|
| 194 |
+
|
| 195 |
+
# ---------- GRADIO CALLBACKS & STATE ----------
|
| 196 |
+
def train_agent(episodes, alpha, gamma, epsilon, seed):
|
| 197 |
+
# create reproducible environment for training
|
| 198 |
+
env = CarEnvironment(seed=seed)
|
| 199 |
+
q_table, rewards = q_learning(env, episodes=episodes, alpha=alpha, gamma=gamma, epsilon=epsilon)
|
| 200 |
+
reward_img = plot_reward_curve(rewards)
|
| 201 |
+
# store q_table and obstacles/goal for later simulation
|
| 202 |
+
metadata = {
|
| 203 |
+
"q_table": q_table,
|
| 204 |
+
"obstacles": env.obstacles.copy(),
|
| 205 |
+
"goal": env.goal,
|
| 206 |
+
"seed": seed
|
| 207 |
+
}
|
| 208 |
+
# return metadata as state, and reward image as data URI
|
| 209 |
+
buf = BytesIO()
|
| 210 |
+
reward_img.save(buf, format="PNG")
|
| 211 |
+
buf.seek(0)
|
| 212 |
+
reward_datauri = "data:image/png;base64," + base64.b64encode(buf.read()).decode("utf-8")
|
| 213 |
+
return metadata, reward_datauri, f"Trained for {episodes} episodes. Reward (last): {round(rewards[-1], 2)}"
|
| 214 |
+
|
| 215 |
+
def start_drive(view_mode, speed_ms, rotate_camera, state):
|
| 216 |
+
# state should contain q_table and map details
|
| 217 |
+
if not state:
|
| 218 |
+
return None, "No trained agent found. Please train the agent first."
|
| 219 |
+
q_table = state["q_table"]
|
| 220 |
+
obstacles = state["obstacles"]
|
| 221 |
+
goal = state["goal"]
|
| 222 |
+
seed = state.get("seed", None)
|
| 223 |
+
env = CarEnvironment(obstacles=obstacles, seed=seed)
|
| 224 |
+
path = simulate_path(env, q_table, max_steps=200)
|
| 225 |
+
# Create frames
|
| 226 |
+
frames = []
|
| 227 |
+
# small camera motion parameters
|
| 228 |
+
base_elev = 30
|
| 229 |
+
base_azim = 45
|
| 230 |
+
for i in range(1, len(path)+1):
|
| 231 |
+
subpath = path[:i]
|
| 232 |
+
if view_mode == "3D":
|
| 233 |
+
elev = base_elev + (rotate_camera * (i/len(path)) * 10)
|
| 234 |
+
azim = base_azim + (rotate_camera * (i/len(path)) * 40)
|
| 235 |
+
frame = render_frame_3d(subpath, obstacles, goal, elev=elev, azim=azim)
|
| 236 |
+
else:
|
| 237 |
+
frame = render_frame_2d(subpath, obstacles, goal)
|
| 238 |
+
frames.append(frame)
|
| 239 |
+
# hold on final frame longer
|
| 240 |
+
if len(frames) >= 1:
|
| 241 |
+
frames.append(frames[-1])
|
| 242 |
+
gif_bytes = frames_to_gif(frames, duration_ms=max(50, int(speed_ms)))
|
| 243 |
+
datauri = img_bytes_to_datauri(gif_bytes, mime='image/gif')
|
| 244 |
+
info = f"Drive simulated: {len(path)-1} steps. View: {view_mode}. Speed: {speed_ms} ms/frame."
|
| 245 |
+
return datauri, info
|
| 246 |
+
|
| 247 |
+
# ---------- GRADIO LAYOUT ----------
|
| 248 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet")) as demo:
|
| 249 |
+
gr.Markdown("""<div style="text-align:center; padding:18px; border-radius:10px;
|
| 250 |
+
background: linear-gradient(90deg,#0d47a1,#4a148c); color:white">
|
| 251 |
+
<h2>🚗 AI Car Navigation Lab — Animated 2D / 3D Demo</h2>
|
| 252 |
+
<p style="margin:0">Train a tabular Q-learning agent, visualize training, then run an animated drive (GIF)</p>
|
| 253 |
+
</div>""")
|
| 254 |
+
|
| 255 |
+
with gr.Row():
|
| 256 |
+
with gr.Column(scale=1):
|
| 257 |
+
gr.Markdown("### ▶ Training Controls")
|
| 258 |
+
episodes = gr.Slider(100, 3000, step=100, value=600, label="Training Episodes")
|
| 259 |
+
alpha = gr.Slider(0.05, 1.0, step=0.05, value=0.7, label="Learning rate α")
|
| 260 |
+
gamma = gr.Slider(0.1, 0.999, step=0.01, value=0.95, label="Discount factor γ")
|
| 261 |
+
epsilon = gr.Slider(0.0, 1.0, step=0.05, value=0.15, label="Exploration ε")
|
| 262 |
+
seed = gr.Number(value=42, label="Random seed (reproducible map)", precision=0)
|
| 263 |
+
train_btn = gr.Button("🧠 Train Agent", variant="primary")
|
| 264 |
+
reward_output = gr.Image(label="Reward Curve (training)", interactive=False)
|
| 265 |
+
train_status = gr.Textbox(label="Training status", interactive=False)
|
| 266 |
+
with gr.Column(scale=1):
|
| 267 |
+
gr.Markdown("### ▶ Simulation & Animation")
|
| 268 |
+
view_mode = gr.Radio(["3D", "2D"], value="3D", label="Visualization Mode")
|
| 269 |
+
speed_slider = gr.Slider(50, 1000, step=10, value=250, label="Animation Speed (ms per frame)")
|
| 270 |
+
rotate_cam = gr.Slider(0, 1, step=0.1, value=0.6, label="Subtle camera rotation (3D only)")
|
| 271 |
+
drive_btn = gr.Button("▶ Start Drive", variant="secondary")
|
| 272 |
+
gif_output = gr.HTML(label="Animated Drive (GIF)")
|
| 273 |
+
drive_info = gr.Textbox(label="Simulation info", interactive=False)
|
| 274 |
+
|
| 275 |
+
# hidden state to hold the trained model & environment metadata
|
| 276 |
+
state = gr.State(value=None)
|
| 277 |
+
|
| 278 |
+
# wire up callbacks
|
| 279 |
+
train_btn.click(fn=train_agent, inputs=[episodes, alpha, gamma, epsilon, seed],
|
| 280 |
+
outputs=[state, reward_output, train_status])
|
| 281 |
+
|
| 282 |
+
drive_btn.click(fn=start_drive, inputs=[view_mode, speed_slider, rotate_cam, state],
|
| 283 |
+
outputs=[gif_output, drive_info])
|
| 284 |
+
|
| 285 |
+
# helpful footer
|
| 286 |
+
gr.Markdown("""
|
| 287 |
+
**Notes:** The agent is tabular Q-learning. Use the sliders to tune hyperparameters.
|
| 288 |
+
The animation is a GIF generated on-the-fly; download it from the GIF image if you want a clip.
|
| 289 |
+
""")
|
| 290 |
|
| 291 |
demo.launch()
|