Abdulahad79's picture
Update app.py
a240fe9 verified
import gradio as gr
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import joblib
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
import matplotlib
from shapely.geometry import shape, Point
import folium
from folium.plugins import Draw
from io import BytesIO
import base64
import json
import os
from PIL import Image
import ee
from datetime import datetime, timedelta
import rasterio
from rasterio.transform import xy
# Path to your JSON key
KEY_PATH = "gee-service-key.json" # or full path if not in the same directory
# Email from your service account JSON file
SERVICE_ACCOUNT = "[email protected]"
credentials = ee.ServiceAccountCredentials(SERVICE_ACCOUNT, KEY_PATH)
try:
ee.Initialize(credentials)
print("βœ… Earth Engine initialized with service account.")
except Exception as e:
print(f"❌ Initialization failed: {e}")
# Define crop season dictionary
crop_season_dict = {
"Punjab": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "mustard", "rapeseed mustard",
"linseed", "peas", "garlic", "onion", "coriander", "fennel", "potato",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "sorghum", "sunflower",
"groundnuts", "okra", "tomato", "chillies", "banana", "mango",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Sindh": {
"Rabi": [
"wheat", "barley", "peas", "gram (chickpea)", "mustard", "onion", "garlic", "spinach",
"coriander", "potato", "fennel", "turnip",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "okra", "tomato",
"chillies", "banana", "mango", "sunflower", "guava",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Balochistan": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "potato",
"onion", "coriander", "fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"maize", "rice", "millet", "sorghum", "peach", "apple", "grapes", "tomato",
"chillies", "pomegranate", "groundnuts", "sunflower",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Khyber Pakhtunkhwa": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "onion",
"garlic", "turnip", "potato", "coriander",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"maize", "rice", "sugarcane", "tomato", "chillies", "peach", "plum", "apricot",
"apple", "mango", "sunflower", "okra", "sesame",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
}
}
# Define model
class CropClassifier(nn.Module):
def __init__(self, input_size, num_classes):
super(CropClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_size, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(),
nn.Dropout(0.4),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.LeakyReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.BatchNorm1d(64),
nn.LeakyReLU(),
nn.Dropout(0.1),
nn.Linear(64, num_classes)
)
def forward(self, x):
return self.network(x)
# Load saved objects
scaler = joblib.load("scaler.pkl")
label_to_idx = joblib.load("label_encoder.pkl")
feature_columns = joblib.load("feature_columns.pkl")
idx_to_label = {v: k for k, v in label_to_idx.items()}
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CropClassifier(len(feature_columns), len(label_to_idx)).to(device)
model.load_state_dict(torch.load("final_crop_model.pth", map_location=device))
model.eval()
# Uncertainty threshold
uncertainty_threshold = 0.2
uncertain_class_idx = len(label_to_idx)
idx_to_label[uncertain_class_idx] = "Uncertain"
# Global variable to store current polygon
current_polygon_data = None
def get_color_palette(n):
if n <= 20:
palette = list(matplotlib.colors.TABLEAU_COLORS.values()) + list(matplotlib.colors.CSS4_COLORS.values())
return palette[:n]
else:
return [matplotlib.colors.rgb2hex(matplotlib.cm.hsv(i/n)) for i in range(n)]
def assign_crop_colors(unique_crops):
palette = get_color_palette(len(unique_crops))
return {crop: palette[i] for i, crop in enumerate(unique_crops)}
def get_valid_user_classes(province, season):
"""Fetch valid classes based on province and season from crop_season_dict."""
try:
user_classes = crop_season_dict.get(province, {}).get(season, [])
return [cls for cls in user_classes if cls in label_to_idx]
except:
return []
# --- Upload Processing Function ---
def process_upload(file, province, season, date):
if file is None:
return "No file uploaded. Please upload a .tiff or .tif file.", None
if not file.name.endswith(('.tiff', '.tif')):
return "Unsupported file format. Please upload a .tiff or .tif file.", None
# Load GeoTIFF file
try:
with rasterio.open(file) as src:
patch = src.read() # Shape: (bands, height, width)
transform = src.transform
rows, cols = patch.shape[1], patch.shape[2]
row_indices, col_indices = np.meshgrid(np.arange(rows), np.arange(cols), indexing='ij')
lon, lat = xy(transform, row_indices, col_indices)
# Convert lon, lat to 2D arrays (shape: [rows, cols])
lon_mask = np.array(lon).reshape(rows, cols)
lat_mask = np.array(lat).reshape(rows, cols)
except Exception as e:
return f"Error reading GeoTIFF file: {str(e)}", None
# Validate the number of bands
if len(patch.shape) != 3 or patch.shape[0] < 7:
return "Invalid GeoTIFF file format. Expected at least 7 bands [r, g, b, rededge, nir, swr1, swr2].", None
# # Resize patch to 500x500 if necessary
# patch = patch[:, :500, :500]
patch = np.transpose(patch, (1, 2, 0)) # Shape: (H, W, 7)
H, W, _ = patch.shape
# Extract RGB for visualization
r, g, b = patch[..., 0], patch[..., 1], patch[..., 2]
rgb = np.stack([r, g, b], axis=-1).astype(np.float32)
rgb_norm = (rgb - rgb.min()) / (rgb.max() - rgb.min() + 1e-6)
# Process pixels for prediction
pixels = []
for i in range(H):
for j in range(W):
pix = patch[i, j].astype(np.float32)
red, green, blue, nir, swr1 = pix[0], pix[1], pix[2], pix[4], pix[5]
pixels.append({
"Province": province,
"Season": season,
"Latitude": lat_mask[i, j],
"Longitude": lon_mask[i, j],
"NDVI": (nir - red) / (nir + red + 1e-6),
"NDWI": (green - nir) / (green + nir + 1e-6),
"NDBI": (swr1 - nir) / (swr1 + nir + 1e-6),
"Red": red,
"Green": green,
"Blue": blue,
"NIR": nir,
"SWIR": swr1,
"Date": date
})
# Create DataFrame and preprocess
df = pd.DataFrame(pixels)
try:
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
except:
return "Invalid date format. Please use DD/MM/YYYY.", None
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
df["Month"] = df["Date"].dt.month
df.drop(columns=["Date"], inplace=True)
# Dummy encoding and feature alignment
df = pd.get_dummies(df, columns=['Province', 'Season'], dummy_na=True)
missing_cols = set(feature_columns) - set(df.columns)
for col in missing_cols:
df[col] = 0
df = df[feature_columns]
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
# Model prediction
try:
X_scaled = scaler.transform(df)
except Exception as e:
return f"Error scaling features: {str(e)}", None
X_tensor = torch.tensor(X_scaled, dtype=torch.float32).to(device)
with torch.no_grad():
outputs = model(X_tensor)
valid_user_classes = get_valid_user_classes(province, season)
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
if user_class_indices:
mask = torch.ones_like(outputs) * -1e10
for idx in user_class_indices:
mask[:, idx] = 0
outputs = outputs + mask
probs = torch.softmax(outputs, dim=1)
max_probs, preds = torch.max(probs, dim=1)
uncertain_mask = max_probs < uncertainty_threshold
preds[uncertain_mask] = uncertain_class_idx
preds = preds.cpu().numpy().reshape(H, W)
# Create visualization
unique_classes = np.unique(preds)
color_map = assign_crop_colors([idx_to_label[cls] for cls in unique_classes])
mask_img = np.zeros((H, W, 3))
for cls, color in color_map.items():
mask_img[preds == label_to_idx.get(cls, uncertain_class_idx)] = matplotlib.colors.to_rgb(color)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
ax1.imshow(rgb_norm)
ax1.set_title("Original RGB Patch")
ax1.axis("off")
ax2.imshow(mask_img)
ax2.set_title("Predicted Crop Classification")
ax2.axis("off")
legend_elements = [Patch(facecolor=color_map[idx_to_label[cls]], edgecolor='black', label=idx_to_label[cls]) for cls in unique_classes]
fig.legend(handles=legend_elements, loc='center right', bbox_to_anchor=(1.15, 0.5), title="Predicted Crops")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
image = Image.open(buf)
# Generate prediction statistics
stats = "Prediction Statistics:\n"
for cls in unique_classes:
class_name = idx_to_label[cls]
pixel_count = np.sum(preds == cls)
percentage = (pixel_count / (H * W)) * 100
stats += f"{class_name}: {pixel_count} pixels ({percentage:.2f}%)\n"
return stats, image
# --- Map Interface ---
def generate_grid_points(polygon, spacing_deg):
min_lon, min_lat, max_lon, max_lat = polygon.bounds
grid_points = []
point_id = 1
lat_step = spacing_deg / 2
lon_step = spacing_deg / 2
lat = min_lat
while lat <= max_lat:
lon = min_lon
while lon <= max_lon:
pt = Point(lon, lat)
if polygon.contains(pt):
is_spaced = True
for existing_pt in grid_points:
dist = ((existing_pt["latitude"] - lat) ** 2 + (existing_pt["longitude"] - lon) ** 2) ** 0.5
if dist < spacing_deg:
is_spaced = False
break
if is_spaced:
grid_points.append({
"point_id": point_id,
"latitude": round(lat, 6),
"longitude": round(lon, 6)
})
point_id += 1
lon += lon_step
lat += lat_step
return grid_points
def get_indices(lat, lon, date_str):
try:
point = ee.Geometry.Point([lon, lat])
date = datetime.strptime(date_str, "%d/%m/%Y")
start = ee.Date(date.strftime('%Y-%m-%d'))
end = ee.Date((date + timedelta(days=30)).strftime('%Y-%m-%d'))
collection = (ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.filterBounds(point)
.filterDate(start, end)
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10)))
image = collection.median().clip(point)
band_names = image.bandNames().getInfo()
if not band_names:
return None
B2 = image.select('B2') # Blue
B3 = image.select('B3') # Green
B4 = image.select('B4') # Red
B8 = image.select('B8') # NIR
B11 = image.select('B11') # SWIR
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',
{'NIR': B8, 'RED': B4, 'BLUE': B2}).rename('EVI')
gndvi = image.normalizedDifference(['B8', 'B3']).rename('GNDVI')
savi = image.expression(
'((NIR - RED) / (NIR + RED + 0.5)) * 1.5',
{'NIR': B8, 'RED': B4}).rename('SAVI')
all_bands = image.addBands([ndvi, ndwi, evi, gndvi, savi])
values = all_bands.reduceRegion(
reducer=ee.Reducer.first(),
geometry=point,
scale=10,
maxPixels=1e8
).getInfo()
return {
'NDVI': values.get('NDVI', 0.0),
'NDWI': values.get('NDWI', 0.0),
'EVI': values.get('EVI', 0.0),
'GNDVI': values.get('GNDVI', 0.0),
'SAVI': values.get('SAVI', 0.0),
'Red': values.get('B4', 0.0),
'Green': values.get('B3', 0.0),
'Blue': values.get('B2', 0.0),
'NIR': values.get('B8', 0.0),
'SWIR': values.get('B11', 0.0)
}
except Exception as e:
print(f"Error fetching indices for lat={lat}, lon={lon}: {str(e)}")
return None
def predict_crop_description(point, static_features, scaler, feature_columns, province, season):
df = pd.DataFrame([{
**static_features,
"Latitude": point["latitude"],
"Longitude": point["longitude"],
"Date": static_features["Date"]
}])
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
df["Month"] = df["Date"].dt.month
df.drop(columns=["Date"], inplace=True)
df = pd.get_dummies(df)
for col in feature_columns:
if col not in df.columns:
df[col] = 0
df = df[feature_columns]
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
scaled = scaler.transform(df)
X_tensor = torch.tensor(scaled, dtype=torch.float32).to(device)
with torch.no_grad():
outputs = model(X_tensor)
valid_user_classes = get_valid_user_classes(province, season)
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
if user_class_indices:
mask = torch.ones_like(outputs) * -1e10
for idx in user_class_indices:
mask[:, idx] = 0
outputs = outputs + mask
probs = torch.softmax(outputs, dim=1)
max_probs, preds = torch.max(probs, dim=1)
uncertain_mask = max_probs < uncertainty_threshold
preds[uncertain_mask] = uncertain_class_idx
return idx_to_label[preds.cpu().numpy()[0]]
def create_interactive_map():
m = folium.Map(location=[30.809, 73.45], zoom_start=12)
Draw(
export=True,
filename='polygon.geojson',
draw_options={
"polyline": False,
"rectangle": True,
"circle": True,
"circlemarker": False,
"marker": False,
"polygon": True
}
).add_to(m)
return m._repr_html_()
def select_polygon(geojson_file):
global current_polygon_data
if not geojson_file:
return "❌ No GeoJSON file uploaded. Please draw a polygon, export it, and upload the file."
try:
with open(geojson_file.name, 'r') as f:
geojson_data = json.load(f)
if geojson_data.get('type') == 'FeatureCollection':
features = geojson_data.get('features', [])
for feature in features:
if feature.get('geometry', {}).get('type') == 'Polygon':
current_polygon_data = feature
return "βœ… Polygon selected successfully!"
return "❌ No valid polygon found in the GeoJSON file."
except Exception as e:
return f"Error reading GeoJSON file: {str(e)}"
def process_polygon_prediction(spacing_m, province, season, date, geojson_file):
global current_polygon_data
try:
datetime.strptime(date, "%d/%m/%Y")
except ValueError:
return "Invalid date format. Please use DD/MM/YYYY.", None, None
if not current_polygon_data:
return "❌ No polygon selected. Please draw a polygon, export it as GeoJSON, and upload it.", None, None
try:
polygon = shape(current_polygon_data['geometry'])
except Exception as e:
return f"Error parsing polygon: {str(e)}", None, None
spacing_deg = spacing_m / 111320.0
points = generate_grid_points(polygon, spacing_deg)
print(f"Number of points selected: {len(points)}")
if not points:
return "No points generated within the polygon. Try increasing the spacing.", None, None
predicted_points = []
static_features = {
"Province": province,
"Season": season,
"Date": date
}
for i, point in enumerate(points, 1):
indices = get_indices(point["latitude"], point["longitude"], date)
print(f"GEE started for point {i} at lat={point['latitude']}, lon={point['longitude']}")
if indices:
print(f"GEE values fetched for point {i}")
static_features.update({
"NDVI": indices["NDVI"],
"NDWI": indices["NDWI"],
"EVI": indices["EVI"],
"GNDVI": indices["GNDVI"],
"SAVI": indices["SAVI"],
"Red": indices["Red"],
"Green": indices["Green"],
"Blue": indices["Blue"],
"NIR": indices["NIR"],
"SWIR": indices["SWIR"]
})
crop = predict_crop_description(point, static_features, scaler, feature_columns, province, season)
point.update({
"crop": crop,
"NDVI": indices["NDVI"],
"NDWI": indices["NDWI"],
"EVI": indices["EVI"],
"GNDVI": indices["GNDVI"],
"SAVI": indices["SAVI"]
})
predicted_points.append(point)
if not predicted_points:
return "No valid data found for any grid points.", None, None
pred_df = pd.DataFrame(predicted_points)
unique_crops = pred_df['crop'].unique()
crop_colors = assign_crop_colors(unique_crops)
center_lat = sum(pt["latitude"] for pt in predicted_points) / len(predicted_points)
center_lon = sum(pt["longitude"] for pt in predicted_points) / len(predicted_points)
pred_map = folium.Map(location=[center_lat, center_lon], zoom_start=12)
folium.GeoJson(
current_polygon_data,
style_function=lambda x: {'color': 'red', 'weight': 3, 'fill': False}
).add_to(pred_map)
for pt in predicted_points:
crop_type = pt.get("crop", "Other")
color = crop_colors.get(crop_type, "#808080")
folium.Circle(
location=[pt["latitude"], pt["longitude"]],
radius=spacing_m/2,
color='black',
weight=1,
fill=True,
fillColor=color,
fillOpacity=0.7,
popup=f"Crop: {crop_type}<br>Lat: {pt['latitude']:.4f}<br>Lon: {pt['longitude']:.4f}<br>NDVI: {pt['NDVI']:.3f}<br>NDWI: {pt['NDWI']:.3f}<br>EVI: {pt['EVI']:.3f}<br>GNDVI: {pt['GNDVI']:.3f}<br>SAVI: {pt['SAVI']:.3f}",
tooltip=crop_type
).add_to(pred_map)
legend_html = '''
<div style="position: fixed; bottom: 50px; left: 50px; width: 180px;
background-color: white; border:2px solid grey; z-index:9999;
font-size:14px; padding: 10px; border-radius: 5px;">
<p style="margin: 0 0 10px 0; font-weight:bold;">🌾 Crop Types</p>
'''
for crop in unique_crops:
color = crop_colors[crop]
legend_html += f'<p style="margin: 5px 0;"><span style="color:{color}; font-size:16px;">●</span> {crop}</p>'
legend_html += '</div>'
pred_map.get_root().html.add_child(folium.Element(legend_html))
crop_stats = pred_df['crop'].value_counts()
stats = f"βœ… Polygon processed successfully!\n\nCrop Distribution (Province: {province}, Season: {season}):\n"
for crop, count in crop_stats.items():
percentage = (count / len(predicted_points)) * 100
stats += f"{crop}: {count} points ({percentage:.1f}%)\n"
for index in ['NDVI', 'NDWI', 'EVI', 'GNDVI', 'SAVI']:
avg = pred_df[index].mean()
stats += f"Average {index}: {avg:.3f}\n"
csv_file_path = f"crop_predictions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
try:
pred_df.to_csv(csv_file_path, index=False)
except Exception as e:
print(f"Error creating CSV file: {str(e)}")
csv_file_path = None
return stats, pred_map._repr_html_(), csv_file_path
# --- Instance Interface ---
def predict_instance(province, season, latitude, longitude, date, ndvi, ndwi, ndbi, red, green, blue, nir, swir):
static_features = {
"Province": province,
"Season": season,
"NDVI": ndvi,
"NDWI": ndwi,
"NDBI": ndbi,
"Red": red,
"Green": green,
"Blue": blue,
"NIR": nir,
"SWIR": swir,
"Date": date
}
crop = predict_crop_description({"latitude": latitude, "longitude": longitude}, static_features, scaler, feature_columns, province, season)
return f"{crop}"
from pathlib import Path
import gradio as gr
# Sample file paths
sample_dir = Path("samples") # Ensure this directory exists with .tif files
sample_files = {
"Sample 1": sample_dir / "sample1.tif",
"Sample 2": sample_dir / "sample2.tif"
}
# Function to simulate upload when sample is clicked
def load_sample_and_predict(sample_name, province, season, date):
file_path = sample_files[sample_name]
return process_upload(file_path, province, season, date)
# --- Gradio Interface ---
with gr.Blocks(title="Crop Predictor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🌾 Crop Predictor")
with gr.Tabs():
with gr.TabItem("πŸ“€ Upload"):
gr.Markdown("Upload a .tiff or .tif file with bands [r, g, b, rededge, nir, swr1, swr2]")
file_input = gr.File(label="Upload .tiff/.tif file", file_types=[".tiff", ".tif"])
with gr.Row():
province = gr.Textbox(label="Province", value="Punjab")
season = gr.Textbox(label="Season", value="Rabi")
with gr.Row():
date = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
upload_btn = gr.Button("πŸ” Predict", variant="primary")
output_stats = gr.Textbox(label="Prediction Statistics", lines=10)
output_image = gr.Image(label="Prediction Result")
upload_btn.click(
fn=process_upload,
inputs=[file_input, province, season, date],
outputs=[output_stats, output_image]
)
# -- Add Sample File Buttons Here --
gr.Markdown("### Or try with a sample file:")
with gr.Row():
for name in sample_files:
gr.Button(name).click(
fn=load_sample_and_predict,
inputs=[gr.State(name), province, season, date],
outputs=[output_stats, output_image]
)
with gr.TabItem("πŸ—ΊοΈ Map"):
gr.Markdown("""
## Interactive Polygon Crop Prediction
**Instructions:**
1. Draw a polygon on the map below using the polygon tool.
2. Click the "Export" button on the map to save the polygon as a GeoJSON file (polygon.geojson).
3. Upload the exported GeoJSON file using the file input below.
4. Adjust settings and click "πŸ” Predict" to process.
""")
map_html = gr.HTML(create_interactive_map, label="Draw Your Polygon Here")
with gr.Row():
geojson_input = gr.File(label="Upload Exported GeoJSON File")
select_btn = gr.Button("🎯 Select My Polygon", variant="secondary")
spacing = gr.Slider(
label="Grid Spacing (meters)",
minimum=10, maximum=1000, value=30, step=100
)
with gr.Row():
province_map = gr.Textbox(label="Province", value="Punjab")
season_map = gr.Textbox(label="Season", value="Multan")
date_map = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
polygon_status = gr.Textbox(
label="Selection Status",
value="⏳ Please draw a polygon, export it, and upload the GeoJSON file.",
interactive=False
)
predict_btn = gr.Button("πŸ” Predict Crops", variant="primary", size="lg")
output_map_stats = gr.Textbox(label="Prediction Results", lines=10)
output_map = gr.HTML(label="Crop Prediction Map")
output_csv = gr.File(label="πŸ“₯ Download Results CSV")
select_btn.click(
fn=select_polygon,
inputs=[geojson_input],
outputs=polygon_status
)
predict_btn.click(
fn=process_polygon_prediction,
inputs=[spacing, province_map, season_map, date_map, geojson_input],
outputs=[output_map_stats, output_map, output_csv]
)
with gr.TabItem("πŸ“Š Instance"):
gr.Markdown("## Single Point Prediction")
gr.Markdown("Enter features manually for a single point prediction")
with gr.Row():
province_inst = gr.Textbox(label="Province", value="Punjab")
season_inst = gr.Textbox(label="Season", value="Rabi")
with gr.Row():
latitude_inst = gr.Number(label="Latitude", value=30.809)
longitude_inst = gr.Number(label="Longitude", value=73.450)
date_inst = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
gr.Markdown("### Spectral Indices")
with gr.Row():
ndvi_inst = gr.Number(label="NDVI", value=0.65)
ndwi_inst = gr.Number(label="NDWI", value=-2.0)
ndbi_inst = gr.Number(label="NDBI", value=0.10)
gr.Markdown("### Band Values")
with gr.Row():
red_inst = gr.Number(label="Red", value=678)
green_inst = gr.Number(label="Green", value=732)
blue_inst = gr.Number(label="Blue", value=620)
with gr.Row():
nir_inst = gr.Number(label="NIR", value=3000)
swir_inst = gr.Number(label="SWIR", value=1800)
instance_btn = gr.Button("πŸ” Predict", variant="primary")
output_instance = gr.Textbox(label="Prediction Result", lines=3)
instance_btn.click(
fn=predict_instance,
inputs=[province_inst, season_inst, latitude_inst, longitude_inst,
date_inst, ndvi_inst, ndwi_inst, ndbi_inst, red_inst,
green_inst, blue_inst, nir_inst, swir_inst],
outputs=output_instance
)
if __name__ == "__main__":
demo.launch(share=True)