File size: 28,030 Bytes
afd2d68 d5dbc69 a240fe9 afd2d68 a240fe9 afd2d68 a240fe9 afd2d68 39aaa38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import gradio as gr
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import joblib
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
import matplotlib
from shapely.geometry import shape, Point
import folium
from folium.plugins import Draw
from io import BytesIO
import base64
import json
import os
from PIL import Image
import ee
from datetime import datetime, timedelta
import rasterio
from rasterio.transform import xy
# Path to your JSON key
KEY_PATH = "gee-service-key.json" # or full path if not in the same directory
# Email from your service account JSON file
SERVICE_ACCOUNT = "[email protected]"
credentials = ee.ServiceAccountCredentials(SERVICE_ACCOUNT, KEY_PATH)
try:
ee.Initialize(credentials)
print("β
Earth Engine initialized with service account.")
except Exception as e:
print(f"β Initialization failed: {e}")
# Define crop season dictionary
crop_season_dict = {
"Punjab": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "mustard", "rapeseed mustard",
"linseed", "peas", "garlic", "onion", "coriander", "fennel", "potato",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "sorghum", "sunflower",
"groundnuts", "okra", "tomato", "chillies", "banana", "mango",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Sindh": {
"Rabi": [
"wheat", "barley", "peas", "gram (chickpea)", "mustard", "onion", "garlic", "spinach",
"coriander", "potato", "fennel", "turnip",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "okra", "tomato",
"chillies", "banana", "mango", "sunflower", "guava",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Balochistan": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "potato",
"onion", "coriander", "fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"maize", "rice", "millet", "sorghum", "peach", "apple", "grapes", "tomato",
"chillies", "pomegranate", "groundnuts", "sunflower",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
},
"Khyber Pakhtunkhwa": {
"Rabi": [
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "onion",
"garlic", "turnip", "potato", "coriander",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
],
"Kharif": [
"maize", "rice", "sugarcane", "tomato", "chillies", "peach", "plum", "apricot",
"apple", "mango", "sunflower", "okra", "sesame",
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
]
}
}
# Define model
class CropClassifier(nn.Module):
def __init__(self, input_size, num_classes):
super(CropClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_size, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(),
nn.Dropout(0.4),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.LeakyReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.BatchNorm1d(64),
nn.LeakyReLU(),
nn.Dropout(0.1),
nn.Linear(64, num_classes)
)
def forward(self, x):
return self.network(x)
# Load saved objects
scaler = joblib.load("scaler.pkl")
label_to_idx = joblib.load("label_encoder.pkl")
feature_columns = joblib.load("feature_columns.pkl")
idx_to_label = {v: k for k, v in label_to_idx.items()}
# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CropClassifier(len(feature_columns), len(label_to_idx)).to(device)
model.load_state_dict(torch.load("final_crop_model.pth", map_location=device))
model.eval()
# Uncertainty threshold
uncertainty_threshold = 0.2
uncertain_class_idx = len(label_to_idx)
idx_to_label[uncertain_class_idx] = "Uncertain"
# Global variable to store current polygon
current_polygon_data = None
def get_color_palette(n):
if n <= 20:
palette = list(matplotlib.colors.TABLEAU_COLORS.values()) + list(matplotlib.colors.CSS4_COLORS.values())
return palette[:n]
else:
return [matplotlib.colors.rgb2hex(matplotlib.cm.hsv(i/n)) for i in range(n)]
def assign_crop_colors(unique_crops):
palette = get_color_palette(len(unique_crops))
return {crop: palette[i] for i, crop in enumerate(unique_crops)}
def get_valid_user_classes(province, season):
"""Fetch valid classes based on province and season from crop_season_dict."""
try:
user_classes = crop_season_dict.get(province, {}).get(season, [])
return [cls for cls in user_classes if cls in label_to_idx]
except:
return []
# --- Upload Processing Function ---
def process_upload(file, province, season, date):
if file is None:
return "No file uploaded. Please upload a .tiff or .tif file.", None
if not file.name.endswith(('.tiff', '.tif')):
return "Unsupported file format. Please upload a .tiff or .tif file.", None
# Load GeoTIFF file
try:
with rasterio.open(file) as src:
patch = src.read() # Shape: (bands, height, width)
transform = src.transform
rows, cols = patch.shape[1], patch.shape[2]
row_indices, col_indices = np.meshgrid(np.arange(rows), np.arange(cols), indexing='ij')
lon, lat = xy(transform, row_indices, col_indices)
# Convert lon, lat to 2D arrays (shape: [rows, cols])
lon_mask = np.array(lon).reshape(rows, cols)
lat_mask = np.array(lat).reshape(rows, cols)
except Exception as e:
return f"Error reading GeoTIFF file: {str(e)}", None
# Validate the number of bands
if len(patch.shape) != 3 or patch.shape[0] < 7:
return "Invalid GeoTIFF file format. Expected at least 7 bands [r, g, b, rededge, nir, swr1, swr2].", None
# # Resize patch to 500x500 if necessary
# patch = patch[:, :500, :500]
patch = np.transpose(patch, (1, 2, 0)) # Shape: (H, W, 7)
H, W, _ = patch.shape
# Extract RGB for visualization
r, g, b = patch[..., 0], patch[..., 1], patch[..., 2]
rgb = np.stack([r, g, b], axis=-1).astype(np.float32)
rgb_norm = (rgb - rgb.min()) / (rgb.max() - rgb.min() + 1e-6)
# Process pixels for prediction
pixels = []
for i in range(H):
for j in range(W):
pix = patch[i, j].astype(np.float32)
red, green, blue, nir, swr1 = pix[0], pix[1], pix[2], pix[4], pix[5]
pixels.append({
"Province": province,
"Season": season,
"Latitude": lat_mask[i, j],
"Longitude": lon_mask[i, j],
"NDVI": (nir - red) / (nir + red + 1e-6),
"NDWI": (green - nir) / (green + nir + 1e-6),
"NDBI": (swr1 - nir) / (swr1 + nir + 1e-6),
"Red": red,
"Green": green,
"Blue": blue,
"NIR": nir,
"SWIR": swr1,
"Date": date
})
# Create DataFrame and preprocess
df = pd.DataFrame(pixels)
try:
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
except:
return "Invalid date format. Please use DD/MM/YYYY.", None
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
df["Month"] = df["Date"].dt.month
df.drop(columns=["Date"], inplace=True)
# Dummy encoding and feature alignment
df = pd.get_dummies(df, columns=['Province', 'Season'], dummy_na=True)
missing_cols = set(feature_columns) - set(df.columns)
for col in missing_cols:
df[col] = 0
df = df[feature_columns]
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
# Model prediction
try:
X_scaled = scaler.transform(df)
except Exception as e:
return f"Error scaling features: {str(e)}", None
X_tensor = torch.tensor(X_scaled, dtype=torch.float32).to(device)
with torch.no_grad():
outputs = model(X_tensor)
valid_user_classes = get_valid_user_classes(province, season)
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
if user_class_indices:
mask = torch.ones_like(outputs) * -1e10
for idx in user_class_indices:
mask[:, idx] = 0
outputs = outputs + mask
probs = torch.softmax(outputs, dim=1)
max_probs, preds = torch.max(probs, dim=1)
uncertain_mask = max_probs < uncertainty_threshold
preds[uncertain_mask] = uncertain_class_idx
preds = preds.cpu().numpy().reshape(H, W)
# Create visualization
unique_classes = np.unique(preds)
color_map = assign_crop_colors([idx_to_label[cls] for cls in unique_classes])
mask_img = np.zeros((H, W, 3))
for cls, color in color_map.items():
mask_img[preds == label_to_idx.get(cls, uncertain_class_idx)] = matplotlib.colors.to_rgb(color)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
ax1.imshow(rgb_norm)
ax1.set_title("Original RGB Patch")
ax1.axis("off")
ax2.imshow(mask_img)
ax2.set_title("Predicted Crop Classification")
ax2.axis("off")
legend_elements = [Patch(facecolor=color_map[idx_to_label[cls]], edgecolor='black', label=idx_to_label[cls]) for cls in unique_classes]
fig.legend(handles=legend_elements, loc='center right', bbox_to_anchor=(1.15, 0.5), title="Predicted Crops")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
image = Image.open(buf)
# Generate prediction statistics
stats = "Prediction Statistics:\n"
for cls in unique_classes:
class_name = idx_to_label[cls]
pixel_count = np.sum(preds == cls)
percentage = (pixel_count / (H * W)) * 100
stats += f"{class_name}: {pixel_count} pixels ({percentage:.2f}%)\n"
return stats, image
# --- Map Interface ---
def generate_grid_points(polygon, spacing_deg):
min_lon, min_lat, max_lon, max_lat = polygon.bounds
grid_points = []
point_id = 1
lat_step = spacing_deg / 2
lon_step = spacing_deg / 2
lat = min_lat
while lat <= max_lat:
lon = min_lon
while lon <= max_lon:
pt = Point(lon, lat)
if polygon.contains(pt):
is_spaced = True
for existing_pt in grid_points:
dist = ((existing_pt["latitude"] - lat) ** 2 + (existing_pt["longitude"] - lon) ** 2) ** 0.5
if dist < spacing_deg:
is_spaced = False
break
if is_spaced:
grid_points.append({
"point_id": point_id,
"latitude": round(lat, 6),
"longitude": round(lon, 6)
})
point_id += 1
lon += lon_step
lat += lat_step
return grid_points
def get_indices(lat, lon, date_str):
try:
point = ee.Geometry.Point([lon, lat])
date = datetime.strptime(date_str, "%d/%m/%Y")
start = ee.Date(date.strftime('%Y-%m-%d'))
end = ee.Date((date + timedelta(days=30)).strftime('%Y-%m-%d'))
collection = (ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.filterBounds(point)
.filterDate(start, end)
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10)))
image = collection.median().clip(point)
band_names = image.bandNames().getInfo()
if not band_names:
return None
B2 = image.select('B2') # Blue
B3 = image.select('B3') # Green
B4 = image.select('B4') # Red
B8 = image.select('B8') # NIR
B11 = image.select('B11') # SWIR
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',
{'NIR': B8, 'RED': B4, 'BLUE': B2}).rename('EVI')
gndvi = image.normalizedDifference(['B8', 'B3']).rename('GNDVI')
savi = image.expression(
'((NIR - RED) / (NIR + RED + 0.5)) * 1.5',
{'NIR': B8, 'RED': B4}).rename('SAVI')
all_bands = image.addBands([ndvi, ndwi, evi, gndvi, savi])
values = all_bands.reduceRegion(
reducer=ee.Reducer.first(),
geometry=point,
scale=10,
maxPixels=1e8
).getInfo()
return {
'NDVI': values.get('NDVI', 0.0),
'NDWI': values.get('NDWI', 0.0),
'EVI': values.get('EVI', 0.0),
'GNDVI': values.get('GNDVI', 0.0),
'SAVI': values.get('SAVI', 0.0),
'Red': values.get('B4', 0.0),
'Green': values.get('B3', 0.0),
'Blue': values.get('B2', 0.0),
'NIR': values.get('B8', 0.0),
'SWIR': values.get('B11', 0.0)
}
except Exception as e:
print(f"Error fetching indices for lat={lat}, lon={lon}: {str(e)}")
return None
def predict_crop_description(point, static_features, scaler, feature_columns, province, season):
df = pd.DataFrame([{
**static_features,
"Latitude": point["latitude"],
"Longitude": point["longitude"],
"Date": static_features["Date"]
}])
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
df["Month"] = df["Date"].dt.month
df.drop(columns=["Date"], inplace=True)
df = pd.get_dummies(df)
for col in feature_columns:
if col not in df.columns:
df[col] = 0
df = df[feature_columns]
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
scaled = scaler.transform(df)
X_tensor = torch.tensor(scaled, dtype=torch.float32).to(device)
with torch.no_grad():
outputs = model(X_tensor)
valid_user_classes = get_valid_user_classes(province, season)
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
if user_class_indices:
mask = torch.ones_like(outputs) * -1e10
for idx in user_class_indices:
mask[:, idx] = 0
outputs = outputs + mask
probs = torch.softmax(outputs, dim=1)
max_probs, preds = torch.max(probs, dim=1)
uncertain_mask = max_probs < uncertainty_threshold
preds[uncertain_mask] = uncertain_class_idx
return idx_to_label[preds.cpu().numpy()[0]]
def create_interactive_map():
m = folium.Map(location=[30.809, 73.45], zoom_start=12)
Draw(
export=True,
filename='polygon.geojson',
draw_options={
"polyline": False,
"rectangle": True,
"circle": True,
"circlemarker": False,
"marker": False,
"polygon": True
}
).add_to(m)
return m._repr_html_()
def select_polygon(geojson_file):
global current_polygon_data
if not geojson_file:
return "β No GeoJSON file uploaded. Please draw a polygon, export it, and upload the file."
try:
with open(geojson_file.name, 'r') as f:
geojson_data = json.load(f)
if geojson_data.get('type') == 'FeatureCollection':
features = geojson_data.get('features', [])
for feature in features:
if feature.get('geometry', {}).get('type') == 'Polygon':
current_polygon_data = feature
return "β
Polygon selected successfully!"
return "β No valid polygon found in the GeoJSON file."
except Exception as e:
return f"Error reading GeoJSON file: {str(e)}"
def process_polygon_prediction(spacing_m, province, season, date, geojson_file):
global current_polygon_data
try:
datetime.strptime(date, "%d/%m/%Y")
except ValueError:
return "Invalid date format. Please use DD/MM/YYYY.", None, None
if not current_polygon_data:
return "β No polygon selected. Please draw a polygon, export it as GeoJSON, and upload it.", None, None
try:
polygon = shape(current_polygon_data['geometry'])
except Exception as e:
return f"Error parsing polygon: {str(e)}", None, None
spacing_deg = spacing_m / 111320.0
points = generate_grid_points(polygon, spacing_deg)
print(f"Number of points selected: {len(points)}")
if not points:
return "No points generated within the polygon. Try increasing the spacing.", None, None
predicted_points = []
static_features = {
"Province": province,
"Season": season,
"Date": date
}
for i, point in enumerate(points, 1):
indices = get_indices(point["latitude"], point["longitude"], date)
print(f"GEE started for point {i} at lat={point['latitude']}, lon={point['longitude']}")
if indices:
print(f"GEE values fetched for point {i}")
static_features.update({
"NDVI": indices["NDVI"],
"NDWI": indices["NDWI"],
"EVI": indices["EVI"],
"GNDVI": indices["GNDVI"],
"SAVI": indices["SAVI"],
"Red": indices["Red"],
"Green": indices["Green"],
"Blue": indices["Blue"],
"NIR": indices["NIR"],
"SWIR": indices["SWIR"]
})
crop = predict_crop_description(point, static_features, scaler, feature_columns, province, season)
point.update({
"crop": crop,
"NDVI": indices["NDVI"],
"NDWI": indices["NDWI"],
"EVI": indices["EVI"],
"GNDVI": indices["GNDVI"],
"SAVI": indices["SAVI"]
})
predicted_points.append(point)
if not predicted_points:
return "No valid data found for any grid points.", None, None
pred_df = pd.DataFrame(predicted_points)
unique_crops = pred_df['crop'].unique()
crop_colors = assign_crop_colors(unique_crops)
center_lat = sum(pt["latitude"] for pt in predicted_points) / len(predicted_points)
center_lon = sum(pt["longitude"] for pt in predicted_points) / len(predicted_points)
pred_map = folium.Map(location=[center_lat, center_lon], zoom_start=12)
folium.GeoJson(
current_polygon_data,
style_function=lambda x: {'color': 'red', 'weight': 3, 'fill': False}
).add_to(pred_map)
for pt in predicted_points:
crop_type = pt.get("crop", "Other")
color = crop_colors.get(crop_type, "#808080")
folium.Circle(
location=[pt["latitude"], pt["longitude"]],
radius=spacing_m/2,
color='black',
weight=1,
fill=True,
fillColor=color,
fillOpacity=0.7,
popup=f"Crop: {crop_type}<br>Lat: {pt['latitude']:.4f}<br>Lon: {pt['longitude']:.4f}<br>NDVI: {pt['NDVI']:.3f}<br>NDWI: {pt['NDWI']:.3f}<br>EVI: {pt['EVI']:.3f}<br>GNDVI: {pt['GNDVI']:.3f}<br>SAVI: {pt['SAVI']:.3f}",
tooltip=crop_type
).add_to(pred_map)
legend_html = '''
<div style="position: fixed; bottom: 50px; left: 50px; width: 180px;
background-color: white; border:2px solid grey; z-index:9999;
font-size:14px; padding: 10px; border-radius: 5px;">
<p style="margin: 0 0 10px 0; font-weight:bold;">πΎ Crop Types</p>
'''
for crop in unique_crops:
color = crop_colors[crop]
legend_html += f'<p style="margin: 5px 0;"><span style="color:{color}; font-size:16px;">β</span> {crop}</p>'
legend_html += '</div>'
pred_map.get_root().html.add_child(folium.Element(legend_html))
crop_stats = pred_df['crop'].value_counts()
stats = f"β
Polygon processed successfully!\n\nCrop Distribution (Province: {province}, Season: {season}):\n"
for crop, count in crop_stats.items():
percentage = (count / len(predicted_points)) * 100
stats += f"{crop}: {count} points ({percentage:.1f}%)\n"
for index in ['NDVI', 'NDWI', 'EVI', 'GNDVI', 'SAVI']:
avg = pred_df[index].mean()
stats += f"Average {index}: {avg:.3f}\n"
csv_file_path = f"crop_predictions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
try:
pred_df.to_csv(csv_file_path, index=False)
except Exception as e:
print(f"Error creating CSV file: {str(e)}")
csv_file_path = None
return stats, pred_map._repr_html_(), csv_file_path
# --- Instance Interface ---
def predict_instance(province, season, latitude, longitude, date, ndvi, ndwi, ndbi, red, green, blue, nir, swir):
static_features = {
"Province": province,
"Season": season,
"NDVI": ndvi,
"NDWI": ndwi,
"NDBI": ndbi,
"Red": red,
"Green": green,
"Blue": blue,
"NIR": nir,
"SWIR": swir,
"Date": date
}
crop = predict_crop_description({"latitude": latitude, "longitude": longitude}, static_features, scaler, feature_columns, province, season)
return f"{crop}"
from pathlib import Path
import gradio as gr
# Sample file paths
sample_dir = Path("samples") # Ensure this directory exists with .tif files
sample_files = {
"Sample 1": sample_dir / "sample1.tif",
"Sample 2": sample_dir / "sample2.tif"
}
# Function to simulate upload when sample is clicked
def load_sample_and_predict(sample_name, province, season, date):
file_path = sample_files[sample_name]
return process_upload(file_path, province, season, date)
# --- Gradio Interface ---
with gr.Blocks(title="Crop Predictor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πΎ Crop Predictor")
with gr.Tabs():
with gr.TabItem("π€ Upload"):
gr.Markdown("Upload a .tiff or .tif file with bands [r, g, b, rededge, nir, swr1, swr2]")
file_input = gr.File(label="Upload .tiff/.tif file", file_types=[".tiff", ".tif"])
with gr.Row():
province = gr.Textbox(label="Province", value="Punjab")
season = gr.Textbox(label="Season", value="Rabi")
with gr.Row():
date = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
upload_btn = gr.Button("π Predict", variant="primary")
output_stats = gr.Textbox(label="Prediction Statistics", lines=10)
output_image = gr.Image(label="Prediction Result")
upload_btn.click(
fn=process_upload,
inputs=[file_input, province, season, date],
outputs=[output_stats, output_image]
)
# -- Add Sample File Buttons Here --
gr.Markdown("### Or try with a sample file:")
with gr.Row():
for name in sample_files:
gr.Button(name).click(
fn=load_sample_and_predict,
inputs=[gr.State(name), province, season, date],
outputs=[output_stats, output_image]
)
with gr.TabItem("πΊοΈ Map"):
gr.Markdown("""
## Interactive Polygon Crop Prediction
**Instructions:**
1. Draw a polygon on the map below using the polygon tool.
2. Click the "Export" button on the map to save the polygon as a GeoJSON file (polygon.geojson).
3. Upload the exported GeoJSON file using the file input below.
4. Adjust settings and click "π Predict" to process.
""")
map_html = gr.HTML(create_interactive_map, label="Draw Your Polygon Here")
with gr.Row():
geojson_input = gr.File(label="Upload Exported GeoJSON File")
select_btn = gr.Button("π― Select My Polygon", variant="secondary")
spacing = gr.Slider(
label="Grid Spacing (meters)",
minimum=10, maximum=1000, value=30, step=100
)
with gr.Row():
province_map = gr.Textbox(label="Province", value="Punjab")
season_map = gr.Textbox(label="Season", value="Multan")
date_map = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
polygon_status = gr.Textbox(
label="Selection Status",
value="β³ Please draw a polygon, export it, and upload the GeoJSON file.",
interactive=False
)
predict_btn = gr.Button("π Predict Crops", variant="primary", size="lg")
output_map_stats = gr.Textbox(label="Prediction Results", lines=10)
output_map = gr.HTML(label="Crop Prediction Map")
output_csv = gr.File(label="π₯ Download Results CSV")
select_btn.click(
fn=select_polygon,
inputs=[geojson_input],
outputs=polygon_status
)
predict_btn.click(
fn=process_polygon_prediction,
inputs=[spacing, province_map, season_map, date_map, geojson_input],
outputs=[output_map_stats, output_map, output_csv]
)
with gr.TabItem("π Instance"):
gr.Markdown("## Single Point Prediction")
gr.Markdown("Enter features manually for a single point prediction")
with gr.Row():
province_inst = gr.Textbox(label="Province", value="Punjab")
season_inst = gr.Textbox(label="Season", value="Rabi")
with gr.Row():
latitude_inst = gr.Number(label="Latitude", value=30.809)
longitude_inst = gr.Number(label="Longitude", value=73.450)
date_inst = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
gr.Markdown("### Spectral Indices")
with gr.Row():
ndvi_inst = gr.Number(label="NDVI", value=0.65)
ndwi_inst = gr.Number(label="NDWI", value=-2.0)
ndbi_inst = gr.Number(label="NDBI", value=0.10)
gr.Markdown("### Band Values")
with gr.Row():
red_inst = gr.Number(label="Red", value=678)
green_inst = gr.Number(label="Green", value=732)
blue_inst = gr.Number(label="Blue", value=620)
with gr.Row():
nir_inst = gr.Number(label="NIR", value=3000)
swir_inst = gr.Number(label="SWIR", value=1800)
instance_btn = gr.Button("π Predict", variant="primary")
output_instance = gr.Textbox(label="Prediction Result", lines=3)
instance_btn.click(
fn=predict_instance,
inputs=[province_inst, season_inst, latitude_inst, longitude_inst,
date_inst, ndvi_inst, ndwi_inst, ndbi_inst, red_inst,
green_inst, blue_inst, nir_inst, swir_inst],
outputs=output_instance
)
if __name__ == "__main__":
demo.launch(share=True) |