Upload 4 files
Browse files- feature_columns.pkl +3 -0
- label_encoder.pkl +3 -0
- main.py +717 -0
- scaler.pkl +3 -0
feature_columns.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9edecbbd51d8e519880bd49f32000dc1ca4c66b4081dda095be6c2ad8d5f4a0
|
| 3 |
+
size 274
|
label_encoder.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b5dba0f890adde9d70d9ea3596a990a3eb3b14c692cdcf5a2c00761be1a3a500
|
| 3 |
+
size 448
|
main.py
ADDED
|
@@ -0,0 +1,717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import joblib
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from matplotlib.patches import Patch
|
| 9 |
+
import matplotlib
|
| 10 |
+
from shapely.geometry import shape, Point
|
| 11 |
+
import folium
|
| 12 |
+
from folium.plugins import Draw
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
import base64
|
| 15 |
+
import json
|
| 16 |
+
import os
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import ee
|
| 19 |
+
from datetime import datetime, timedelta
|
| 20 |
+
import rasterio
|
| 21 |
+
from rasterio.transform import xy
|
| 22 |
+
|
| 23 |
+
# Initialize Earth Engine
|
| 24 |
+
try:
|
| 25 |
+
ee.Initialize(project='artful-striker-466710-b3')
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error initializing GEE: {str(e)}")
|
| 28 |
+
ee.Authenticate()
|
| 29 |
+
ee.Initialize(project='artful-striker-466710-b3')
|
| 30 |
+
|
| 31 |
+
# Define crop season dictionary
|
| 32 |
+
crop_season_dict = {
|
| 33 |
+
"Punjab": {
|
| 34 |
+
"Rabi": [
|
| 35 |
+
"wheat", "barley", "gram (chickpea)", "lentil", "mustard", "rapeseed mustard",
|
| 36 |
+
"linseed", "peas", "garlic", "onion", "coriander", "fennel", "potato",
|
| 37 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 38 |
+
],
|
| 39 |
+
"Kharif": [
|
| 40 |
+
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "sorghum", "sunflower",
|
| 41 |
+
"groundnuts", "okra", "tomato", "chillies", "banana", "mango",
|
| 42 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
"Sindh": {
|
| 46 |
+
"Rabi": [
|
| 47 |
+
"wheat", "barley", "peas", "gram (chickpea)", "mustard", "onion", "garlic", "spinach",
|
| 48 |
+
"coriander", "potato", "fennel", "turnip",
|
| 49 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 50 |
+
],
|
| 51 |
+
"Kharif": [
|
| 52 |
+
"cotton", "rice", "sugarcane", "maize", "sesame", "millet", "okra", "tomato",
|
| 53 |
+
"chillies", "banana", "mango", "sunflower", "guava",
|
| 54 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
"Balochistan": {
|
| 58 |
+
"Rabi": [
|
| 59 |
+
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "potato",
|
| 60 |
+
"onion", "coriander", "fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 61 |
+
],
|
| 62 |
+
"Kharif": [
|
| 63 |
+
"maize", "rice", "millet", "sorghum", "peach", "apple", "grapes", "tomato",
|
| 64 |
+
"chillies", "pomegranate", "groundnuts", "sunflower",
|
| 65 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"Khyber Pakhtunkhwa": {
|
| 69 |
+
"Rabi": [
|
| 70 |
+
"wheat", "barley", "gram (chickpea)", "lentil", "peas", "mustard", "onion",
|
| 71 |
+
"garlic", "turnip", "potato", "coriander",
|
| 72 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 73 |
+
],
|
| 74 |
+
"Kharif": [
|
| 75 |
+
"maize", "rice", "sugarcane", "tomato", "chillies", "peach", "plum", "apricot",
|
| 76 |
+
"apple", "mango", "sunflower", "okra", "sesame",
|
| 77 |
+
"fallow (agriculture)", "water", "barren", "shrubs", "forest"
|
| 78 |
+
]
|
| 79 |
+
}
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
# Define model
|
| 83 |
+
class CropClassifier(nn.Module):
|
| 84 |
+
def __init__(self, input_size, num_classes):
|
| 85 |
+
super(CropClassifier, self).__init__()
|
| 86 |
+
self.network = nn.Sequential(
|
| 87 |
+
nn.Linear(input_size, 512),
|
| 88 |
+
nn.BatchNorm1d(512),
|
| 89 |
+
nn.LeakyReLU(),
|
| 90 |
+
nn.Dropout(0.4),
|
| 91 |
+
nn.Linear(512, 256),
|
| 92 |
+
nn.BatchNorm1d(256),
|
| 93 |
+
nn.LeakyReLU(),
|
| 94 |
+
nn.Dropout(0.3),
|
| 95 |
+
nn.Linear(256, 128),
|
| 96 |
+
nn.BatchNorm1d(128),
|
| 97 |
+
nn.LeakyReLU(),
|
| 98 |
+
nn.Dropout(0.2),
|
| 99 |
+
nn.Linear(128, 64),
|
| 100 |
+
nn.BatchNorm1d(64),
|
| 101 |
+
nn.LeakyReLU(),
|
| 102 |
+
nn.Dropout(0.1),
|
| 103 |
+
nn.Linear(64, num_classes)
|
| 104 |
+
)
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
return self.network(x)
|
| 107 |
+
|
| 108 |
+
# Load saved objects
|
| 109 |
+
scaler = joblib.load("scaler.pkl")
|
| 110 |
+
label_to_idx = joblib.load("label_encoder.pkl")
|
| 111 |
+
feature_columns = joblib.load("feature_columns.pkl")
|
| 112 |
+
idx_to_label = {v: k for k, v in label_to_idx.items()}
|
| 113 |
+
|
| 114 |
+
# Load model
|
| 115 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 116 |
+
model = CropClassifier(len(feature_columns), len(label_to_idx)).to(device)
|
| 117 |
+
model.load_state_dict(torch.load("final_crop_model.pth", map_location=device))
|
| 118 |
+
model.eval()
|
| 119 |
+
|
| 120 |
+
# Uncertainty threshold
|
| 121 |
+
uncertainty_threshold = 0.2
|
| 122 |
+
uncertain_class_idx = len(label_to_idx)
|
| 123 |
+
idx_to_label[uncertain_class_idx] = "Uncertain"
|
| 124 |
+
|
| 125 |
+
# Global variable to store current polygon
|
| 126 |
+
current_polygon_data = None
|
| 127 |
+
|
| 128 |
+
def get_color_palette(n):
|
| 129 |
+
if n <= 20:
|
| 130 |
+
palette = list(matplotlib.colors.TABLEAU_COLORS.values()) + list(matplotlib.colors.CSS4_COLORS.values())
|
| 131 |
+
return palette[:n]
|
| 132 |
+
else:
|
| 133 |
+
return [matplotlib.colors.rgb2hex(matplotlib.cm.hsv(i/n)) for i in range(n)]
|
| 134 |
+
|
| 135 |
+
def assign_crop_colors(unique_crops):
|
| 136 |
+
palette = get_color_palette(len(unique_crops))
|
| 137 |
+
return {crop: palette[i] for i, crop in enumerate(unique_crops)}
|
| 138 |
+
|
| 139 |
+
def get_valid_user_classes(province, season):
|
| 140 |
+
"""Fetch valid classes based on province and season from crop_season_dict."""
|
| 141 |
+
try:
|
| 142 |
+
user_classes = crop_season_dict.get(province, {}).get(season, [])
|
| 143 |
+
return [cls for cls in user_classes if cls in label_to_idx]
|
| 144 |
+
except:
|
| 145 |
+
return []
|
| 146 |
+
|
| 147 |
+
# --- Upload Processing Function ---
|
| 148 |
+
def process_upload(file, province, season, date):
|
| 149 |
+
if file is None:
|
| 150 |
+
return "No file uploaded. Please upload a .tiff or .tif file.", None
|
| 151 |
+
|
| 152 |
+
if not file.name.endswith(('.tiff', '.tif')):
|
| 153 |
+
return "Unsupported file format. Please upload a .tiff or .tif file.", None
|
| 154 |
+
|
| 155 |
+
# Load GeoTIFF file
|
| 156 |
+
try:
|
| 157 |
+
with rasterio.open(file) as src:
|
| 158 |
+
patch = src.read() # Shape: (bands, height, width)
|
| 159 |
+
transform = src.transform
|
| 160 |
+
rows, cols = patch.shape[1], patch.shape[2]
|
| 161 |
+
row_indices, col_indices = np.meshgrid(np.arange(rows), np.arange(cols), indexing='ij')
|
| 162 |
+
lon, lat = xy(transform, row_indices, col_indices)
|
| 163 |
+
# Convert lon, lat to 2D arrays (shape: [rows, cols])
|
| 164 |
+
lon_mask = np.array(lon).reshape(rows, cols)
|
| 165 |
+
lat_mask = np.array(lat).reshape(rows, cols)
|
| 166 |
+
except Exception as e:
|
| 167 |
+
return f"Error reading GeoTIFF file: {str(e)}", None
|
| 168 |
+
|
| 169 |
+
# Validate the number of bands
|
| 170 |
+
if len(patch.shape) != 3 or patch.shape[0] < 7:
|
| 171 |
+
return "Invalid GeoTIFF file format. Expected at least 7 bands [r, g, b, rededge, nir, swr1, swr2].", None
|
| 172 |
+
|
| 173 |
+
# # Resize patch to 500x500 if necessary
|
| 174 |
+
# patch = patch[:, :500, :500]
|
| 175 |
+
patch = np.transpose(patch, (1, 2, 0)) # Shape: (H, W, 7)
|
| 176 |
+
H, W, _ = patch.shape
|
| 177 |
+
|
| 178 |
+
# Extract RGB for visualization
|
| 179 |
+
r, g, b = patch[..., 0], patch[..., 1], patch[..., 2]
|
| 180 |
+
rgb = np.stack([r, g, b], axis=-1).astype(np.float32)
|
| 181 |
+
rgb_norm = (rgb - rgb.min()) / (rgb.max() - rgb.min() + 1e-6)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Process pixels for prediction
|
| 185 |
+
pixels = []
|
| 186 |
+
for i in range(H):
|
| 187 |
+
for j in range(W):
|
| 188 |
+
pix = patch[i, j].astype(np.float32)
|
| 189 |
+
red, green, blue, nir, swr1 = pix[0], pix[1], pix[2], pix[4], pix[5]
|
| 190 |
+
pixels.append({
|
| 191 |
+
"Province": province,
|
| 192 |
+
"Season": season,
|
| 193 |
+
"Latitude": lat_mask[i, j],
|
| 194 |
+
"Longitude": lon_mask[i, j],
|
| 195 |
+
"NDVI": (nir - red) / (nir + red + 1e-6),
|
| 196 |
+
"NDWI": (green - nir) / (green + nir + 1e-6),
|
| 197 |
+
"NDBI": (swr1 - nir) / (swr1 + nir + 1e-6),
|
| 198 |
+
"Red": red,
|
| 199 |
+
"Green": green,
|
| 200 |
+
"Blue": blue,
|
| 201 |
+
"NIR": nir,
|
| 202 |
+
"SWIR": swr1,
|
| 203 |
+
"Date": date
|
| 204 |
+
})
|
| 205 |
+
|
| 206 |
+
# Create DataFrame and preprocess
|
| 207 |
+
df = pd.DataFrame(pixels)
|
| 208 |
+
try:
|
| 209 |
+
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
|
| 210 |
+
except:
|
| 211 |
+
return "Invalid date format. Please use DD/MM/YYYY.", None
|
| 212 |
+
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
|
| 213 |
+
df["Month"] = df["Date"].dt.month
|
| 214 |
+
df.drop(columns=["Date"], inplace=True)
|
| 215 |
+
|
| 216 |
+
# Dummy encoding and feature alignment
|
| 217 |
+
df = pd.get_dummies(df, columns=['Province', 'Season'], dummy_na=True)
|
| 218 |
+
missing_cols = set(feature_columns) - set(df.columns)
|
| 219 |
+
for col in missing_cols:
|
| 220 |
+
df[col] = 0
|
| 221 |
+
df = df[feature_columns]
|
| 222 |
+
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
|
| 223 |
+
|
| 224 |
+
# Model prediction
|
| 225 |
+
try:
|
| 226 |
+
X_scaled = scaler.transform(df)
|
| 227 |
+
except Exception as e:
|
| 228 |
+
return f"Error scaling features: {str(e)}", None
|
| 229 |
+
X_tensor = torch.tensor(X_scaled, dtype=torch.float32).to(device)
|
| 230 |
+
with torch.no_grad():
|
| 231 |
+
outputs = model(X_tensor)
|
| 232 |
+
valid_user_classes = get_valid_user_classes(province, season)
|
| 233 |
+
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
|
| 234 |
+
if user_class_indices:
|
| 235 |
+
mask = torch.ones_like(outputs) * -1e10
|
| 236 |
+
for idx in user_class_indices:
|
| 237 |
+
mask[:, idx] = 0
|
| 238 |
+
outputs = outputs + mask
|
| 239 |
+
probs = torch.softmax(outputs, dim=1)
|
| 240 |
+
max_probs, preds = torch.max(probs, dim=1)
|
| 241 |
+
uncertain_mask = max_probs < uncertainty_threshold
|
| 242 |
+
preds[uncertain_mask] = uncertain_class_idx
|
| 243 |
+
preds = preds.cpu().numpy().reshape(H, W)
|
| 244 |
+
|
| 245 |
+
# Create visualization
|
| 246 |
+
unique_classes = np.unique(preds)
|
| 247 |
+
color_map = assign_crop_colors([idx_to_label[cls] for cls in unique_classes])
|
| 248 |
+
mask_img = np.zeros((H, W, 3))
|
| 249 |
+
for cls, color in color_map.items():
|
| 250 |
+
mask_img[preds == label_to_idx.get(cls, uncertain_class_idx)] = matplotlib.colors.to_rgb(color)
|
| 251 |
+
|
| 252 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
|
| 253 |
+
ax1.imshow(rgb_norm)
|
| 254 |
+
ax1.set_title("Original RGB Patch")
|
| 255 |
+
ax1.axis("off")
|
| 256 |
+
ax2.imshow(mask_img)
|
| 257 |
+
ax2.set_title("Predicted Crop Classification")
|
| 258 |
+
ax2.axis("off")
|
| 259 |
+
legend_elements = [Patch(facecolor=color_map[idx_to_label[cls]], edgecolor='black', label=idx_to_label[cls]) for cls in unique_classes]
|
| 260 |
+
fig.legend(handles=legend_elements, loc='center right', bbox_to_anchor=(1.15, 0.5), title="Predicted Crops")
|
| 261 |
+
plt.tight_layout()
|
| 262 |
+
|
| 263 |
+
buf = BytesIO()
|
| 264 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 265 |
+
plt.close()
|
| 266 |
+
buf.seek(0)
|
| 267 |
+
image = Image.open(buf)
|
| 268 |
+
|
| 269 |
+
# Generate prediction statistics
|
| 270 |
+
stats = "Prediction Statistics:\n"
|
| 271 |
+
for cls in unique_classes:
|
| 272 |
+
class_name = idx_to_label[cls]
|
| 273 |
+
pixel_count = np.sum(preds == cls)
|
| 274 |
+
percentage = (pixel_count / (H * W)) * 100
|
| 275 |
+
stats += f"{class_name}: {pixel_count} pixels ({percentage:.2f}%)\n"
|
| 276 |
+
|
| 277 |
+
return stats, image
|
| 278 |
+
|
| 279 |
+
# --- Map Interface ---
|
| 280 |
+
def generate_grid_points(polygon, spacing_deg):
|
| 281 |
+
min_lon, min_lat, max_lon, max_lat = polygon.bounds
|
| 282 |
+
grid_points = []
|
| 283 |
+
point_id = 1
|
| 284 |
+
lat_step = spacing_deg / 2
|
| 285 |
+
lon_step = spacing_deg / 2
|
| 286 |
+
lat = min_lat
|
| 287 |
+
while lat <= max_lat:
|
| 288 |
+
lon = min_lon
|
| 289 |
+
while lon <= max_lon:
|
| 290 |
+
pt = Point(lon, lat)
|
| 291 |
+
if polygon.contains(pt):
|
| 292 |
+
is_spaced = True
|
| 293 |
+
for existing_pt in grid_points:
|
| 294 |
+
dist = ((existing_pt["latitude"] - lat) ** 2 + (existing_pt["longitude"] - lon) ** 2) ** 0.5
|
| 295 |
+
if dist < spacing_deg:
|
| 296 |
+
is_spaced = False
|
| 297 |
+
break
|
| 298 |
+
if is_spaced:
|
| 299 |
+
grid_points.append({
|
| 300 |
+
"point_id": point_id,
|
| 301 |
+
"latitude": round(lat, 6),
|
| 302 |
+
"longitude": round(lon, 6)
|
| 303 |
+
})
|
| 304 |
+
point_id += 1
|
| 305 |
+
lon += lon_step
|
| 306 |
+
lat += lat_step
|
| 307 |
+
return grid_points
|
| 308 |
+
|
| 309 |
+
def get_indices(lat, lon, date_str):
|
| 310 |
+
try:
|
| 311 |
+
point = ee.Geometry.Point([lon, lat])
|
| 312 |
+
date = datetime.strptime(date_str, "%d/%m/%Y")
|
| 313 |
+
start = ee.Date(date.strftime('%Y-%m-%d'))
|
| 314 |
+
end = ee.Date((date + timedelta(days=30)).strftime('%Y-%m-%d'))
|
| 315 |
+
|
| 316 |
+
collection = (ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
|
| 317 |
+
.filterBounds(point)
|
| 318 |
+
.filterDate(start, end)
|
| 319 |
+
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10)))
|
| 320 |
+
|
| 321 |
+
image = collection.median().clip(point)
|
| 322 |
+
|
| 323 |
+
band_names = image.bandNames().getInfo()
|
| 324 |
+
if not band_names:
|
| 325 |
+
return None
|
| 326 |
+
|
| 327 |
+
B2 = image.select('B2') # Blue
|
| 328 |
+
B3 = image.select('B3') # Green
|
| 329 |
+
B4 = image.select('B4') # Red
|
| 330 |
+
B8 = image.select('B8') # NIR
|
| 331 |
+
B11 = image.select('B11') # SWIR
|
| 332 |
+
|
| 333 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
| 334 |
+
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
| 335 |
+
evi = image.expression(
|
| 336 |
+
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',
|
| 337 |
+
{'NIR': B8, 'RED': B4, 'BLUE': B2}).rename('EVI')
|
| 338 |
+
gndvi = image.normalizedDifference(['B8', 'B3']).rename('GNDVI')
|
| 339 |
+
savi = image.expression(
|
| 340 |
+
'((NIR - RED) / (NIR + RED + 0.5)) * 1.5',
|
| 341 |
+
{'NIR': B8, 'RED': B4}).rename('SAVI')
|
| 342 |
+
|
| 343 |
+
all_bands = image.addBands([ndvi, ndwi, evi, gndvi, savi])
|
| 344 |
+
|
| 345 |
+
values = all_bands.reduceRegion(
|
| 346 |
+
reducer=ee.Reducer.first(),
|
| 347 |
+
geometry=point,
|
| 348 |
+
scale=10,
|
| 349 |
+
maxPixels=1e8
|
| 350 |
+
).getInfo()
|
| 351 |
+
|
| 352 |
+
return {
|
| 353 |
+
'NDVI': values.get('NDVI', 0.0),
|
| 354 |
+
'NDWI': values.get('NDWI', 0.0),
|
| 355 |
+
'EVI': values.get('EVI', 0.0),
|
| 356 |
+
'GNDVI': values.get('GNDVI', 0.0),
|
| 357 |
+
'SAVI': values.get('SAVI', 0.0),
|
| 358 |
+
'Red': values.get('B4', 0.0),
|
| 359 |
+
'Green': values.get('B3', 0.0),
|
| 360 |
+
'Blue': values.get('B2', 0.0),
|
| 361 |
+
'NIR': values.get('B8', 0.0),
|
| 362 |
+
'SWIR': values.get('B11', 0.0)
|
| 363 |
+
}
|
| 364 |
+
except Exception as e:
|
| 365 |
+
print(f"Error fetching indices for lat={lat}, lon={lon}: {str(e)}")
|
| 366 |
+
return None
|
| 367 |
+
|
| 368 |
+
def predict_crop_description(point, static_features, scaler, feature_columns, province, season):
|
| 369 |
+
df = pd.DataFrame([{
|
| 370 |
+
**static_features,
|
| 371 |
+
"Latitude": point["latitude"],
|
| 372 |
+
"Longitude": point["longitude"],
|
| 373 |
+
"Date": static_features["Date"]
|
| 374 |
+
}])
|
| 375 |
+
df["Date"] = pd.to_datetime(df["Date"], dayfirst=True)
|
| 376 |
+
df["HalfMonth"] = df["Date"].dt.day.apply(lambda x: 0 if x <= 15 else 1)
|
| 377 |
+
df["Month"] = df["Date"].dt.month
|
| 378 |
+
df.drop(columns=["Date"], inplace=True)
|
| 379 |
+
df = pd.get_dummies(df)
|
| 380 |
+
for col in feature_columns:
|
| 381 |
+
if col not in df.columns:
|
| 382 |
+
df[col] = 0
|
| 383 |
+
df = df[feature_columns]
|
| 384 |
+
df = df.replace([np.inf, -np.inf], np.finfo(np.float32).eps)
|
| 385 |
+
scaled = scaler.transform(df)
|
| 386 |
+
X_tensor = torch.tensor(scaled, dtype=torch.float32).to(device)
|
| 387 |
+
with torch.no_grad():
|
| 388 |
+
outputs = model(X_tensor)
|
| 389 |
+
valid_user_classes = get_valid_user_classes(province, season)
|
| 390 |
+
user_class_indices = [label_to_idx[cls] for cls in valid_user_classes if cls in label_to_idx]
|
| 391 |
+
if user_class_indices:
|
| 392 |
+
mask = torch.ones_like(outputs) * -1e10
|
| 393 |
+
for idx in user_class_indices:
|
| 394 |
+
mask[:, idx] = 0
|
| 395 |
+
outputs = outputs + mask
|
| 396 |
+
probs = torch.softmax(outputs, dim=1)
|
| 397 |
+
max_probs, preds = torch.max(probs, dim=1)
|
| 398 |
+
uncertain_mask = max_probs < uncertainty_threshold
|
| 399 |
+
preds[uncertain_mask] = uncertain_class_idx
|
| 400 |
+
return idx_to_label[preds.cpu().numpy()[0]]
|
| 401 |
+
|
| 402 |
+
def create_interactive_map():
|
| 403 |
+
m = folium.Map(location=[30.809, 73.45], zoom_start=12)
|
| 404 |
+
Draw(
|
| 405 |
+
export=True,
|
| 406 |
+
filename='polygon.geojson',
|
| 407 |
+
draw_options={
|
| 408 |
+
"polyline": False,
|
| 409 |
+
"rectangle": True,
|
| 410 |
+
"circle": True,
|
| 411 |
+
"circlemarker": False,
|
| 412 |
+
"marker": False,
|
| 413 |
+
"polygon": True
|
| 414 |
+
}
|
| 415 |
+
).add_to(m)
|
| 416 |
+
return m._repr_html_()
|
| 417 |
+
|
| 418 |
+
def select_polygon(geojson_file):
|
| 419 |
+
global current_polygon_data
|
| 420 |
+
if not geojson_file:
|
| 421 |
+
return "β No GeoJSON file uploaded. Please draw a polygon, export it, and upload the file."
|
| 422 |
+
|
| 423 |
+
try:
|
| 424 |
+
with open(geojson_file.name, 'r') as f:
|
| 425 |
+
geojson_data = json.load(f)
|
| 426 |
+
|
| 427 |
+
if geojson_data.get('type') == 'FeatureCollection':
|
| 428 |
+
features = geojson_data.get('features', [])
|
| 429 |
+
for feature in features:
|
| 430 |
+
if feature.get('geometry', {}).get('type') == 'Polygon':
|
| 431 |
+
current_polygon_data = feature
|
| 432 |
+
return "β
Polygon selected successfully!"
|
| 433 |
+
return "β No valid polygon found in the GeoJSON file."
|
| 434 |
+
except Exception as e:
|
| 435 |
+
return f"Error reading GeoJSON file: {str(e)}"
|
| 436 |
+
|
| 437 |
+
def process_polygon_prediction(spacing_m, province, season, date, geojson_file):
|
| 438 |
+
global current_polygon_data
|
| 439 |
+
|
| 440 |
+
try:
|
| 441 |
+
datetime.strptime(date, "%d/%m/%Y")
|
| 442 |
+
except ValueError:
|
| 443 |
+
return "Invalid date format. Please use DD/MM/YYYY.", None, None
|
| 444 |
+
|
| 445 |
+
if not current_polygon_data:
|
| 446 |
+
return "β No polygon selected. Please draw a polygon, export it as GeoJSON, and upload it.", None, None
|
| 447 |
+
|
| 448 |
+
try:
|
| 449 |
+
polygon = shape(current_polygon_data['geometry'])
|
| 450 |
+
except Exception as e:
|
| 451 |
+
return f"Error parsing polygon: {str(e)}", None, None
|
| 452 |
+
|
| 453 |
+
spacing_deg = spacing_m / 111320.0
|
| 454 |
+
points = generate_grid_points(polygon, spacing_deg)
|
| 455 |
+
print(f"Number of points selected: {len(points)}")
|
| 456 |
+
|
| 457 |
+
if not points:
|
| 458 |
+
return "No points generated within the polygon. Try increasing the spacing.", None, None
|
| 459 |
+
|
| 460 |
+
predicted_points = []
|
| 461 |
+
static_features = {
|
| 462 |
+
"Province": province,
|
| 463 |
+
"Season": season,
|
| 464 |
+
"Date": date
|
| 465 |
+
}
|
| 466 |
+
|
| 467 |
+
for i, point in enumerate(points, 1):
|
| 468 |
+
indices = get_indices(point["latitude"], point["longitude"], date)
|
| 469 |
+
print(f"GEE started for point {i} at lat={point['latitude']}, lon={point['longitude']}")
|
| 470 |
+
if indices:
|
| 471 |
+
print(f"GEE values fetched for point {i}")
|
| 472 |
+
static_features.update({
|
| 473 |
+
"NDVI": indices["NDVI"],
|
| 474 |
+
"NDWI": indices["NDWI"],
|
| 475 |
+
"EVI": indices["EVI"],
|
| 476 |
+
"GNDVI": indices["GNDVI"],
|
| 477 |
+
"SAVI": indices["SAVI"],
|
| 478 |
+
"Red": indices["Red"],
|
| 479 |
+
"Green": indices["Green"],
|
| 480 |
+
"Blue": indices["Blue"],
|
| 481 |
+
"NIR": indices["NIR"],
|
| 482 |
+
"SWIR": indices["SWIR"]
|
| 483 |
+
})
|
| 484 |
+
crop = predict_crop_description(point, static_features, scaler, feature_columns, province, season)
|
| 485 |
+
point.update({
|
| 486 |
+
"crop": crop,
|
| 487 |
+
"NDVI": indices["NDVI"],
|
| 488 |
+
"NDWI": indices["NDWI"],
|
| 489 |
+
"EVI": indices["EVI"],
|
| 490 |
+
"GNDVI": indices["GNDVI"],
|
| 491 |
+
"SAVI": indices["SAVI"]
|
| 492 |
+
})
|
| 493 |
+
predicted_points.append(point)
|
| 494 |
+
|
| 495 |
+
if not predicted_points:
|
| 496 |
+
return "No valid data found for any grid points.", None, None
|
| 497 |
+
|
| 498 |
+
pred_df = pd.DataFrame(predicted_points)
|
| 499 |
+
unique_crops = pred_df['crop'].unique()
|
| 500 |
+
crop_colors = assign_crop_colors(unique_crops)
|
| 501 |
+
|
| 502 |
+
center_lat = sum(pt["latitude"] for pt in predicted_points) / len(predicted_points)
|
| 503 |
+
center_lon = sum(pt["longitude"] for pt in predicted_points) / len(predicted_points)
|
| 504 |
+
pred_map = folium.Map(location=[center_lat, center_lon], zoom_start=12)
|
| 505 |
+
|
| 506 |
+
folium.GeoJson(
|
| 507 |
+
current_polygon_data,
|
| 508 |
+
style_function=lambda x: {'color': 'red', 'weight': 3, 'fill': False}
|
| 509 |
+
).add_to(pred_map)
|
| 510 |
+
|
| 511 |
+
for pt in predicted_points:
|
| 512 |
+
crop_type = pt.get("crop", "Other")
|
| 513 |
+
color = crop_colors.get(crop_type, "#808080")
|
| 514 |
+
folium.Circle(
|
| 515 |
+
location=[pt["latitude"], pt["longitude"]],
|
| 516 |
+
radius=spacing_m/2,
|
| 517 |
+
color='black',
|
| 518 |
+
weight=1,
|
| 519 |
+
fill=True,
|
| 520 |
+
fillColor=color,
|
| 521 |
+
fillOpacity=0.7,
|
| 522 |
+
popup=f"Crop: {crop_type}<br>Lat: {pt['latitude']:.4f}<br>Lon: {pt['longitude']:.4f}<br>NDVI: {pt['NDVI']:.3f}<br>NDWI: {pt['NDWI']:.3f}<br>EVI: {pt['EVI']:.3f}<br>GNDVI: {pt['GNDVI']:.3f}<br>SAVI: {pt['SAVI']:.3f}",
|
| 523 |
+
tooltip=crop_type
|
| 524 |
+
).add_to(pred_map)
|
| 525 |
+
|
| 526 |
+
legend_html = '''
|
| 527 |
+
<div style="position: fixed; bottom: 50px; left: 50px; width: 180px;
|
| 528 |
+
background-color: white; border:2px solid grey; z-index:9999;
|
| 529 |
+
font-size:14px; padding: 10px; border-radius: 5px;">
|
| 530 |
+
<p style="margin: 0 0 10px 0; font-weight:bold;">πΎ Crop Types</p>
|
| 531 |
+
'''
|
| 532 |
+
for crop in unique_crops:
|
| 533 |
+
color = crop_colors[crop]
|
| 534 |
+
legend_html += f'<p style="margin: 5px 0;"><span style="color:{color}; font-size:16px;">β</span> {crop}</p>'
|
| 535 |
+
legend_html += '</div>'
|
| 536 |
+
pred_map.get_root().html.add_child(folium.Element(legend_html))
|
| 537 |
+
|
| 538 |
+
crop_stats = pred_df['crop'].value_counts()
|
| 539 |
+
stats = f"β
Polygon processed successfully!\n\nCrop Distribution (Province: {province}, Season: {season}):\n"
|
| 540 |
+
for crop, count in crop_stats.items():
|
| 541 |
+
percentage = (count / len(predicted_points)) * 100
|
| 542 |
+
stats += f"{crop}: {count} points ({percentage:.1f}%)\n"
|
| 543 |
+
for index in ['NDVI', 'NDWI', 'EVI', 'GNDVI', 'SAVI']:
|
| 544 |
+
avg = pred_df[index].mean()
|
| 545 |
+
stats += f"Average {index}: {avg:.3f}\n"
|
| 546 |
+
|
| 547 |
+
csv_file_path = f"crop_predictions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
| 548 |
+
try:
|
| 549 |
+
pred_df.to_csv(csv_file_path, index=False)
|
| 550 |
+
except Exception as e:
|
| 551 |
+
print(f"Error creating CSV file: {str(e)}")
|
| 552 |
+
csv_file_path = None
|
| 553 |
+
|
| 554 |
+
return stats, pred_map._repr_html_(), csv_file_path
|
| 555 |
+
|
| 556 |
+
# --- Instance Interface ---
|
| 557 |
+
def predict_instance(province, season, latitude, longitude, date, ndvi, ndwi, ndbi, red, green, blue, nir, swir):
|
| 558 |
+
static_features = {
|
| 559 |
+
"Province": province,
|
| 560 |
+
"Season": season,
|
| 561 |
+
"NDVI": ndvi,
|
| 562 |
+
"NDWI": ndwi,
|
| 563 |
+
"NDBI": ndbi,
|
| 564 |
+
"Red": red,
|
| 565 |
+
"Green": green,
|
| 566 |
+
"Blue": blue,
|
| 567 |
+
"NIR": nir,
|
| 568 |
+
"SWIR": swir,
|
| 569 |
+
"Date": date
|
| 570 |
+
}
|
| 571 |
+
crop = predict_crop_description({"latitude": latitude, "longitude": longitude}, static_features, scaler, feature_columns, province, season)
|
| 572 |
+
return f"{crop}"
|
| 573 |
+
|
| 574 |
+
from pathlib import Path
|
| 575 |
+
import gradio as gr
|
| 576 |
+
|
| 577 |
+
# Sample file paths
|
| 578 |
+
sample_dir = Path("samples") # Ensure this directory exists with .tif files
|
| 579 |
+
sample_files = {
|
| 580 |
+
"Sample 1": sample_dir / "sample1.tif",
|
| 581 |
+
"Sample 2": sample_dir / "sample2.tif"
|
| 582 |
+
}
|
| 583 |
+
|
| 584 |
+
# Function to simulate upload when sample is clicked
|
| 585 |
+
def load_sample_and_predict(sample_name, province, season, date):
|
| 586 |
+
file_path = sample_files[sample_name]
|
| 587 |
+
return process_upload(file_path, province, season, date)
|
| 588 |
+
|
| 589 |
+
# --- Gradio Interface ---
|
| 590 |
+
with gr.Blocks(title="Crop Predictor", theme=gr.themes.Soft()) as demo:
|
| 591 |
+
gr.Markdown("# πΎ Crop Predictor")
|
| 592 |
+
|
| 593 |
+
with gr.Tabs():
|
| 594 |
+
with gr.TabItem("π€ Upload"):
|
| 595 |
+
gr.Markdown("Upload a .tiff or .tif file with bands [r, g, b, rededge, nir, swr1, swr2]")
|
| 596 |
+
|
| 597 |
+
file_input = gr.File(label="Upload .tiff/.tif file", file_types=[".tiff", ".tif"])
|
| 598 |
+
|
| 599 |
+
with gr.Row():
|
| 600 |
+
province = gr.Textbox(label="Province", value="Punjab")
|
| 601 |
+
season = gr.Textbox(label="Season", value="Rabi")
|
| 602 |
+
|
| 603 |
+
with gr.Row():
|
| 604 |
+
date = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
|
| 605 |
+
|
| 606 |
+
upload_btn = gr.Button("π Predict", variant="primary")
|
| 607 |
+
output_stats = gr.Textbox(label="Prediction Statistics", lines=10)
|
| 608 |
+
output_image = gr.Image(label="Prediction Result")
|
| 609 |
+
|
| 610 |
+
upload_btn.click(
|
| 611 |
+
fn=process_upload,
|
| 612 |
+
inputs=[file_input, province, season, date],
|
| 613 |
+
outputs=[output_stats, output_image]
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# -- Add Sample File Buttons Here --
|
| 617 |
+
gr.Markdown("### Or try with a sample file:")
|
| 618 |
+
with gr.Row():
|
| 619 |
+
for name in sample_files:
|
| 620 |
+
gr.Button(name).click(
|
| 621 |
+
fn=load_sample_and_predict,
|
| 622 |
+
inputs=[gr.State(name), province, season, date],
|
| 623 |
+
outputs=[output_stats, output_image]
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
with gr.TabItem("πΊοΈ Map"):
|
| 627 |
+
gr.Markdown("""
|
| 628 |
+
## Interactive Polygon Crop Prediction
|
| 629 |
+
|
| 630 |
+
**Instructions:**
|
| 631 |
+
1. Draw a polygon on the map below using the polygon tool.
|
| 632 |
+
2. Click the "Export" button on the map to save the polygon as a GeoJSON file (polygon.geojson).
|
| 633 |
+
3. Upload the exported GeoJSON file using the file input below.
|
| 634 |
+
4. Adjust settings and click "π Predict" to process.
|
| 635 |
+
""")
|
| 636 |
+
|
| 637 |
+
map_html = gr.HTML(create_interactive_map, label="Draw Your Polygon Here")
|
| 638 |
+
|
| 639 |
+
with gr.Row():
|
| 640 |
+
geojson_input = gr.File(label="Upload Exported GeoJSON File")
|
| 641 |
+
select_btn = gr.Button("π― Select My Polygon", variant="secondary")
|
| 642 |
+
spacing = gr.Slider(
|
| 643 |
+
label="Grid Spacing (meters)",
|
| 644 |
+
minimum=10, maximum=1000, value=30, step=100
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
with gr.Row():
|
| 648 |
+
province_map = gr.Textbox(label="Province", value="Punjab")
|
| 649 |
+
season_map = gr.Textbox(label="Season", value="Multan")
|
| 650 |
+
date_map = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
|
| 651 |
+
|
| 652 |
+
polygon_status = gr.Textbox(
|
| 653 |
+
label="Selection Status",
|
| 654 |
+
value="β³ Please draw a polygon, export it, and upload the GeoJSON file.",
|
| 655 |
+
interactive=False
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
predict_btn = gr.Button("π Predict Crops", variant="primary", size="lg")
|
| 659 |
+
|
| 660 |
+
output_map_stats = gr.Textbox(label="Prediction Results", lines=10)
|
| 661 |
+
output_map = gr.HTML(label="Crop Prediction Map")
|
| 662 |
+
output_csv = gr.File(label="π₯ Download Results CSV")
|
| 663 |
+
|
| 664 |
+
select_btn.click(
|
| 665 |
+
fn=select_polygon,
|
| 666 |
+
inputs=[geojson_input],
|
| 667 |
+
outputs=polygon_status
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
predict_btn.click(
|
| 671 |
+
fn=process_polygon_prediction,
|
| 672 |
+
inputs=[spacing, province_map, season_map, date_map, geojson_input],
|
| 673 |
+
outputs=[output_map_stats, output_map, output_csv]
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
with gr.TabItem("π Instance"):
|
| 677 |
+
gr.Markdown("## Single Point Prediction")
|
| 678 |
+
gr.Markdown("Enter features manually for a single point prediction")
|
| 679 |
+
|
| 680 |
+
with gr.Row():
|
| 681 |
+
province_inst = gr.Textbox(label="Province", value="Punjab")
|
| 682 |
+
season_inst = gr.Textbox(label="Season", value="Rabi")
|
| 683 |
+
|
| 684 |
+
with gr.Row():
|
| 685 |
+
latitude_inst = gr.Number(label="Latitude", value=30.809)
|
| 686 |
+
longitude_inst = gr.Number(label="Longitude", value=73.450)
|
| 687 |
+
date_inst = gr.Textbox(label="Date (DD/MM/YYYY)", value="10/01/2023")
|
| 688 |
+
|
| 689 |
+
gr.Markdown("### Spectral Indices")
|
| 690 |
+
with gr.Row():
|
| 691 |
+
ndvi_inst = gr.Number(label="NDVI", value=0.65)
|
| 692 |
+
ndwi_inst = gr.Number(label="NDWI", value=-2.0)
|
| 693 |
+
ndbi_inst = gr.Number(label="NDBI", value=0.10)
|
| 694 |
+
|
| 695 |
+
gr.Markdown("### Band Values")
|
| 696 |
+
with gr.Row():
|
| 697 |
+
red_inst = gr.Number(label="Red", value=678)
|
| 698 |
+
green_inst = gr.Number(label="Green", value=732)
|
| 699 |
+
blue_inst = gr.Number(label="Blue", value=620)
|
| 700 |
+
|
| 701 |
+
with gr.Row():
|
| 702 |
+
nir_inst = gr.Number(label="NIR", value=3000)
|
| 703 |
+
swir_inst = gr.Number(label="SWIR", value=1800)
|
| 704 |
+
|
| 705 |
+
instance_btn = gr.Button("π Predict", variant="primary")
|
| 706 |
+
output_instance = gr.Textbox(label="Prediction Result", lines=3)
|
| 707 |
+
|
| 708 |
+
instance_btn.click(
|
| 709 |
+
fn=predict_instance,
|
| 710 |
+
inputs=[province_inst, season_inst, latitude_inst, longitude_inst,
|
| 711 |
+
date_inst, ndvi_inst, ndwi_inst, ndbi_inst, red_inst,
|
| 712 |
+
green_inst, blue_inst, nir_inst, swir_inst],
|
| 713 |
+
outputs=output_instance
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
if __name__ == "__main__":
|
| 717 |
+
demo.launch(share=True)
|
scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da797b275739c1567c2311b4d475c8f2d09c2a69d02e91f29b51bb3ad4366840
|
| 3 |
+
size 2183
|