Spaces:
Sleeping
Sleeping
File size: 17,013 Bytes
e7bed33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
import os
from pathlib import Path
from scipy import stats
from scipy.fftpack import dct
from sklearn.preprocessing import StandardScaler
import torchvision.transforms as transforms
import open_clip
import joblib
from huggingface_hub import hf_hub_download
# --- CONFIGURATION ---
CONFIDENCE_THRESHOLD = 0.99
# The list directory remains in the root of the Space
LIST_DIR = Path("list")
# ==============================================================================
# 1. FEATURE EXTRACTOR
# ==============================================================================
class FeatureExtractor:
@staticmethod
def extract_color_features(img):
img_np = np.array(img); features = {}
for i, channel in enumerate(['R', 'G', 'B']):
ch = img_np[:, :, i].flatten()
if len(ch) > 0:
features.update({f'color_{channel}_mean': float(np.mean(ch)), f'color_{channel}_std': float(np.std(ch)), f'color_{channel}_skew': float(stats.skew(ch)), f'color_{channel}_min': float(np.min(ch)), f'color_{channel}_max': float(np.max(ch))})
else:
features.update({f'color_{channel}_mean': 0.0, f'color_{channel}_std': 0.0, f'color_{channel}_skew': 0.0, f'color_{channel}_min': 0.0, f'color_{channel}_max': 0.0})
# --- FIX: Removed Histogram extraction (9 features) to match the 40 features expected by your .pth files ---
# hist, _ = np.histogram(ch, bins=3, range=(0, 256)); hist = hist / (hist.sum() + 1e-8);
# for j, v in enumerate(hist): features[f'color_{channel}_hist_bin{j}'] = float(v)
try:
hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
features.update({'color_hue_mean': float(np.mean(hsv[:, :, 0])), 'color_saturation_mean': float(np.mean(hsv[:, :, 1])), 'color_value_mean': float(np.mean(hsv[:, :, 2]))})
except:
features.update({'color_hue_mean': 0.0, 'color_saturation_mean': 0.0, 'color_value_mean': 0.0})
return features
@staticmethod
def extract_texture_features(img):
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); features = {}
# Optimization: Canny/Sobel can be slow on huge images.
# We assume image is resized in extract_all_features
edges = cv2.Canny(gray, 50, 150)
gx, gy = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3), cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
features.update({
'texture_edge_density': float(np.sum(edges > 0) / edges.size) if edges.size > 0 else 0.0,
'texture_gradient_mean': float(np.mean(np.sqrt(gx**2 + gy**2))),
'texture_gradient_std': float(np.std(np.sqrt(gx**2 + gy**2))),
'texture_laplacian_var': float(np.var(cv2.Laplacian(gray, cv2.CV_64F)))
})
return features
@staticmethod
def extract_shape_features(img):
w, h = img.size; features = {}; features.update({'shape_height': h, 'shape_width': w, 'shape_aspect_ratio': w / h if h > 0 else 0.0, 'shape_area': w * h}); return features
@staticmethod
def extract_brightness_features(img):
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); features = {}; features.update({'brightness_mean': float(np.mean(gray)), 'brightness_std': float(np.std(gray))}); return features
@staticmethod
def extract_frequency_features(img):
img_np = np.array(img)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
gray_small = cv2.resize(gray, (64, 64))
dct_coeffs = dct(dct(gray_small.T, norm='ortho').T, norm='ortho')
features = {}
# FIX: Loop must finish before returning!
for i, v in enumerate(dct_coeffs.flatten()[:10]):
features[f'freq_dct_{i}'] = float(v)
return features
@staticmethod
def extract_statistical_features(img):
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); hist, _ = np.histogram(gray.flatten(), bins=256, range=(0, 256)); hist = hist / (hist.sum() + 1e-8)
hist_nonzero = hist[hist > 0]; entropy = -np.sum(hist_nonzero * np.log2(hist_nonzero)) if hist_nonzero.size > 0 else 0.0; features = {}; features.update({'stat_entropy': entropy, 'stat_uniformity': float(np.sum(hist**2))}); return features
@staticmethod
def extract_all_features(img):
img = img.convert('RGB')
# OPTIMIZATION: Resize for Handcrafted Features to speed up Canny/Sobel
max_size = 1024
if max(img.size) > max_size:
img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
features = {}
features.update(FeatureExtractor.extract_color_features(img))
features.update(FeatureExtractor.extract_texture_features(img))
features.update(FeatureExtractor.extract_shape_features(img))
features.update(FeatureExtractor.extract_brightness_features(img))
features.update(FeatureExtractor.extract_frequency_features(img))
features.update(FeatureExtractor.extract_statistical_features(img))
return features
# ==============================================================================
# 2. MODEL ARCHITECTURE
# ==============================================================================
class BioCLIP2ZeroShot:
def __init__(self, device, class_to_idx, id_to_name):
self.device = device; self.num_classes = len(class_to_idx); self.idx_to_class = {v: k for k, v in class_to_idx.items()}; self.id_to_name = id_to_name
print("Loading BioCLIP-2 model...")
try:
self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:imageomics/bioclip-2')
self.tokenizer = open_clip.get_tokenizer('hf-hub:imageomics/bioclip-2')
except:
print("Warning: BioCLIP-2 load failed, trying base BioCLIP...")
self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:imageomics/bioclip')
self.tokenizer = open_clip.get_tokenizer('hf-hub:imageomics/bioclip')
self.model.to(self.device).eval()
self.text_features_prototypes = self._precompute_text_features()
def _precompute_text_features(self):
templates = [ "a photo of {}", "a herbarium specimen of {}", "a botanical photograph of {}", "{} plant species", "leaves and flowers of {}" ]
class_ids = [self.idx_to_class[i] for i in range(self.num_classes)]
class_names = [self.id_to_name.get(str(cid), str(cid)) for cid in class_ids]
all_emb = []; bs = 64
text_inputs = [t.format(name) for name in class_names for t in templates]
with torch.no_grad():
for i in range(0, len(text_inputs), bs):
tokens = self.tokenizer(text_inputs[i:i+bs]).to(self.device)
emb = self.model.encode_text(tokens)
all_emb.append(emb)
all_text_embs = torch.cat(all_emb, dim=0).cpu().numpy()
prototypes = np.zeros((self.num_classes, all_text_embs.shape[1]), dtype=np.float32)
for idx in range(self.num_classes):
start = idx * len(templates)
avg = np.mean(all_text_embs[start:start + len(templates)], axis=0)
norm = np.linalg.norm(avg)
prototypes[idx] = avg / norm if norm > 0 else avg
return torch.from_numpy(prototypes).to(self.device)
def predict_zero_shot_logits(self, img):
processed = self.preprocess(img).unsqueeze(0).to(self.device)
with torch.no_grad():
image_features = self.model.encode_image(processed)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
prototypes = self.text_features_prototypes
try: logit_scale = self.model.logit_scale.exp()
except: logit_scale = torch.tensor(100.0).to(self.device)
# --- FIX: Added .detach() before .numpy() ---
logits = (logit_scale * image_features @ prototypes.T).detach().cpu().numpy().squeeze()
return logits
class EnsembleClassifier(nn.Module):
def __init__(self, num_handcrafted_features=40, dinov2_dim=1024, bioclip2_dim=100,
num_classes=100, hidden_dim=512, dropout_rate=0.3, prototype_dim=768):
super().__init__()
self.dinov2_proj = nn.Sequential(nn.Linear(dinov2_dim, hidden_dim), nn.ReLU(), nn.Dropout(dropout_rate))
# --- FIX: Removed 3rd layer to match training checkpoint (Size mismatch error) ---
self.handcraft_branch = nn.Sequential(
nn.Linear(num_handcrafted_features, 128), nn.BatchNorm1d(128), nn.ReLU(), nn.Dropout(dropout_rate),
nn.Linear(128, hidden_dim // 2), nn.BatchNorm1d(hidden_dim // 2), nn.ReLU(), nn.Dropout(dropout_rate)
)
self.bioclip2_branch = nn.Sequential(
nn.Linear(bioclip2_dim, hidden_dim // 4), nn.BatchNorm1d(hidden_dim // 4), nn.ReLU(), nn.Dropout(dropout_rate * 0.5))
fusion_input_dim = hidden_dim + hidden_dim // 2 + hidden_dim // 4
self.fusion = nn.Sequential(
nn.Linear(fusion_input_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.ReLU(), nn.Dropout(dropout_rate))
self.classifier = nn.Linear(hidden_dim, num_classes)
self.prototype_proj = nn.Linear(hidden_dim, prototype_dim)
def forward(self, handcrafted_features, dinov2_features, bioclip2_logits):
dinov2_out = self.dinov2_proj(dinov2_features)
handcraft_out = self.handcraft_branch(handcrafted_features)
bioclip2_out = self.bioclip2_branch(bioclip2_logits)
shared_features = self.fusion(torch.cat([dinov2_out, handcraft_out, bioclip2_out], dim=1))
class_output = self.classifier(shared_features)
projected_feature = self.prototype_proj(shared_features)
return class_output, projected_feature
# ==============================================================================
# 3. MANAGER CLASS & EXPORTED FUNCTION
# ==============================================================================
class ModelManager:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Initializing SPA Ensemble on {self.device}...")
# --- CONFIG: YOUR MODEL REPO ID ---
# Using the correct repo ID provided
self.REPO_ID = "FrAnKu34t23/ensemble_models_plant"
self.class_to_idx, self.idx_to_class, self.id_to_name = self.load_class_info()
self.num_classes = len(self.class_to_idx)
print(f"SPA Ensemble: Loaded {self.num_classes} classes.")
# 1. Load DINOv2
print("SPA Ensemble: Loading DINOv2...")
self.dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
self.dinov2.to(self.device).eval()
self.dinov2_transform = transforms.Compose([
transforms.Resize(256), transforms.CenterCrop(224),
transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 2. Load BioCLIP
self.bioclip = BioCLIP2ZeroShot(self.device, self.class_to_idx, self.id_to_name)
# 3. Download & Load Scaler
print("SPA Ensemble: Downloading Scaler...")
try:
# Now fetching scaler.joblib from the Model Repo
scaler_path = hf_hub_download(repo_id=self.REPO_ID, filename="scaler.joblib")
self.scaler = joblib.load(scaler_path)
print("✓ Scaler downloaded and loaded.")
except Exception as e:
print(f"Warning: Could not download scaler from {self.REPO_ID}: {e}.")
print("Using dummy scaler (predictions may be inaccurate).")
self.scaler = StandardScaler()
# FIX: Fit on 40 zeros instead of 49 to match the feature reduction
self.scaler.fit(np.zeros((1, 40)))
# 4. Download & Load Ensemble Models
self.models = []
hidden_dims = [384, 448, 512, 576, 640]
dropout_rates = [0.2, 0.25, 0.3, 0.35, 0.4]
print(f"SPA Ensemble: Downloading Models from {self.REPO_ID}...")
for i in range(5):
filename = f"ensemble_model_{i}.pth"
try:
# Download
model_path = hf_hub_download(repo_id=self.REPO_ID, filename=filename)
# Load
# FIX: Passed num_handcrafted_features=40 and prototype_dim=768 to match weights
model = EnsembleClassifier(
num_handcrafted_features=40, dinov2_dim=1024, bioclip2_dim=self.num_classes,
num_classes=self.num_classes, hidden_dim=hidden_dims[i], dropout_rate=dropout_rates[i],
prototype_dim=768
)
state_dict = torch.load(model_path, map_location=self.device)
model.load_state_dict(state_dict)
model.to(self.device).eval()
self.models.append(model)
print(f"✓ Loaded {filename}")
except Exception as e:
print(f"Failed to load {filename}: {e}")
def load_class_info(self):
class_to_idx = {}
id_to_name = {}
species_path = LIST_DIR / "species_list.txt"
train_path = LIST_DIR / "train.txt"
classes_set = set()
if train_path.exists():
with open(train_path, 'r') as f:
for line in f:
parts = line.strip().split()
if len(parts) >= 2: classes_set.add(parts[1])
elif species_path.exists():
with open(species_path, 'r') as f:
for line in f:
parts = line.strip().split(";", 1)
classes_set.add(parts[0].strip())
else:
classes_set = {str(i) for i in range(100)}
sorted_classes = sorted(list(classes_set))
class_to_idx = {cls: idx for idx, cls in enumerate(sorted_classes)}
idx_to_class = {idx: cls for cls, idx in class_to_idx.items()}
if species_path.exists():
with open(species_path, 'r') as f:
for line in f:
if ";" in line:
parts = line.strip().split(";", 1)
id_to_name[parts[0].strip()] = parts[1].strip()
return class_to_idx, idx_to_class, id_to_name
def predict(self, image):
if image is None: return {}
img_pil = image.convert("RGB")
# 1. Handcrafted Features
hc_feats = FeatureExtractor.extract_all_features(img_pil)
hc_vector = np.array([hc_feats[k] for k in sorted(hc_feats.keys())]).reshape(1, -1)
hc_vector = self.scaler.transform(hc_vector)
hc_tensor = torch.FloatTensor(hc_vector).to(self.device)
# 2. DINOv2 Features
dino_input = self.dinov2_transform(img_pil).unsqueeze(0).to(self.device)
with torch.no_grad():
dino_feats = self.dinov2(dino_input)
dino_feats = dino_feats / (dino_feats.norm(dim=-1, keepdim=True) + 1e-8)
# 3. BioCLIP Features
bioclip_logits = self.bioclip.predict_zero_shot_logits(img_pil)
bioclip_tensor = torch.FloatTensor(bioclip_logits).unsqueeze(0).to(self.device)
# 4. Ensemble Prediction
all_probs = []
if not self.models: return {"Error": "SPA Models not loaded"}
for model in self.models:
with torch.no_grad():
probs, _ = model(hc_tensor, dino_feats, bioclip_tensor)
probs = F.softmax(probs, dim=1).cpu().numpy()[0]
all_probs.append(probs)
final_ens_probs = np.mean(all_probs, axis=0)
# 5. Hybrid Routing
exp_logits = np.exp(bioclip_logits)
bioclip_probs = exp_logits / np.sum(exp_logits)
ens_pred_idx = np.argmax(final_ens_probs)
ens_conf = final_ens_probs[ens_pred_idx]
if ens_conf < CONFIDENCE_THRESHOLD:
final_probs = (final_ens_probs + bioclip_probs) / 2
else:
final_probs = final_ens_probs
# 6. Formatting
top_k = 5
top_indices = np.argsort(final_probs)[::-1][:top_k]
results = {}
for idx in top_indices:
class_id = self.idx_to_class[idx]
name = self.id_to_name.get(class_id, class_id)
score = float(final_probs[idx])
results[f"{name} ({class_id})"] = score
return results
# Initialize Singleton
try:
spa_manager = ModelManager()
except Exception as e:
print(f"CRITICAL ERROR initializing SPA: {e}")
spa_manager = None
def predict_spa(image):
if spa_manager is None:
return {"Error": "SPA System failed to initialize."}
return spa_manager.predict(image) |