Spaces:
Sleeping
Sleeping
Upload spa_ensemble.py
Browse files- new_approach/spa_ensemble.py +351 -0
new_approach/spa_ensemble.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from scipy import stats
|
| 10 |
+
from scipy.fftpack import dct
|
| 11 |
+
from sklearn.preprocessing import StandardScaler
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import open_clip
|
| 14 |
+
import joblib
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
|
| 17 |
+
# --- CONFIGURATION ---
|
| 18 |
+
CONFIDENCE_THRESHOLD = 0.99
|
| 19 |
+
# The list directory remains in the root of the Space
|
| 20 |
+
LIST_DIR = Path("list")
|
| 21 |
+
|
| 22 |
+
# ==============================================================================
|
| 23 |
+
# 1. FEATURE EXTRACTOR
|
| 24 |
+
# ==============================================================================
|
| 25 |
+
class FeatureExtractor:
|
| 26 |
+
@staticmethod
|
| 27 |
+
def extract_color_features(img):
|
| 28 |
+
img_np = np.array(img); features = {}
|
| 29 |
+
for i, channel in enumerate(['R', 'G', 'B']):
|
| 30 |
+
ch = img_np[:, :, i].flatten()
|
| 31 |
+
if len(ch) > 0:
|
| 32 |
+
features.update({f'color_{channel}_mean': float(np.mean(ch)), f'color_{channel}_std': float(np.std(ch)), f'color_{channel}_skew': float(stats.skew(ch)), f'color_{channel}_min': float(np.min(ch)), f'color_{channel}_max': float(np.max(ch))})
|
| 33 |
+
else:
|
| 34 |
+
features.update({f'color_{channel}_mean': 0.0, f'color_{channel}_std': 0.0, f'color_{channel}_skew': 0.0, f'color_{channel}_min': 0.0, f'color_{channel}_max': 0.0})
|
| 35 |
+
|
| 36 |
+
# --- FIX: Removed Histogram extraction (9 features) to match the 40 features expected by your .pth files ---
|
| 37 |
+
# hist, _ = np.histogram(ch, bins=3, range=(0, 256)); hist = hist / (hist.sum() + 1e-8);
|
| 38 |
+
# for j, v in enumerate(hist): features[f'color_{channel}_hist_bin{j}'] = float(v)
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
|
| 42 |
+
features.update({'color_hue_mean': float(np.mean(hsv[:, :, 0])), 'color_saturation_mean': float(np.mean(hsv[:, :, 1])), 'color_value_mean': float(np.mean(hsv[:, :, 2]))})
|
| 43 |
+
except:
|
| 44 |
+
features.update({'color_hue_mean': 0.0, 'color_saturation_mean': 0.0, 'color_value_mean': 0.0})
|
| 45 |
+
return features
|
| 46 |
+
|
| 47 |
+
@staticmethod
|
| 48 |
+
def extract_texture_features(img):
|
| 49 |
+
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); features = {}
|
| 50 |
+
# Optimization: Canny/Sobel can be slow on huge images.
|
| 51 |
+
# We assume image is resized in extract_all_features
|
| 52 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 53 |
+
gx, gy = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3), cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
|
| 54 |
+
features.update({
|
| 55 |
+
'texture_edge_density': float(np.sum(edges > 0) / edges.size) if edges.size > 0 else 0.0,
|
| 56 |
+
'texture_gradient_mean': float(np.mean(np.sqrt(gx**2 + gy**2))),
|
| 57 |
+
'texture_gradient_std': float(np.std(np.sqrt(gx**2 + gy**2))),
|
| 58 |
+
'texture_laplacian_var': float(np.var(cv2.Laplacian(gray, cv2.CV_64F)))
|
| 59 |
+
})
|
| 60 |
+
return features
|
| 61 |
+
|
| 62 |
+
@staticmethod
|
| 63 |
+
def extract_shape_features(img):
|
| 64 |
+
w, h = img.size; features = {}; features.update({'shape_height': h, 'shape_width': w, 'shape_aspect_ratio': w / h if h > 0 else 0.0, 'shape_area': w * h}); return features
|
| 65 |
+
|
| 66 |
+
@staticmethod
|
| 67 |
+
def extract_brightness_features(img):
|
| 68 |
+
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); features = {}; features.update({'brightness_mean': float(np.mean(gray)), 'brightness_std': float(np.std(gray))}); return features
|
| 69 |
+
|
| 70 |
+
@staticmethod
|
| 71 |
+
def extract_frequency_features(img):
|
| 72 |
+
img_np = np.array(img)
|
| 73 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 74 |
+
gray_small = cv2.resize(gray, (64, 64))
|
| 75 |
+
dct_coeffs = dct(dct(gray_small.T, norm='ortho').T, norm='ortho')
|
| 76 |
+
features = {}
|
| 77 |
+
# FIX: Loop must finish before returning!
|
| 78 |
+
for i, v in enumerate(dct_coeffs.flatten()[:10]):
|
| 79 |
+
features[f'freq_dct_{i}'] = float(v)
|
| 80 |
+
return features
|
| 81 |
+
|
| 82 |
+
@staticmethod
|
| 83 |
+
def extract_statistical_features(img):
|
| 84 |
+
img_np = np.array(img); gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY); hist, _ = np.histogram(gray.flatten(), bins=256, range=(0, 256)); hist = hist / (hist.sum() + 1e-8)
|
| 85 |
+
hist_nonzero = hist[hist > 0]; entropy = -np.sum(hist_nonzero * np.log2(hist_nonzero)) if hist_nonzero.size > 0 else 0.0; features = {}; features.update({'stat_entropy': entropy, 'stat_uniformity': float(np.sum(hist**2))}); return features
|
| 86 |
+
|
| 87 |
+
@staticmethod
|
| 88 |
+
def extract_all_features(img):
|
| 89 |
+
img = img.convert('RGB')
|
| 90 |
+
# OPTIMIZATION: Resize for Handcrafted Features to speed up Canny/Sobel
|
| 91 |
+
max_size = 1024
|
| 92 |
+
if max(img.size) > max_size:
|
| 93 |
+
img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 94 |
+
|
| 95 |
+
features = {}
|
| 96 |
+
features.update(FeatureExtractor.extract_color_features(img))
|
| 97 |
+
features.update(FeatureExtractor.extract_texture_features(img))
|
| 98 |
+
features.update(FeatureExtractor.extract_shape_features(img))
|
| 99 |
+
features.update(FeatureExtractor.extract_brightness_features(img))
|
| 100 |
+
features.update(FeatureExtractor.extract_frequency_features(img))
|
| 101 |
+
features.update(FeatureExtractor.extract_statistical_features(img))
|
| 102 |
+
return features
|
| 103 |
+
|
| 104 |
+
# ==============================================================================
|
| 105 |
+
# 2. MODEL ARCHITECTURE
|
| 106 |
+
# ==============================================================================
|
| 107 |
+
class BioCLIP2ZeroShot:
|
| 108 |
+
def __init__(self, device, class_to_idx, id_to_name):
|
| 109 |
+
self.device = device; self.num_classes = len(class_to_idx); self.idx_to_class = {v: k for k, v in class_to_idx.items()}; self.id_to_name = id_to_name
|
| 110 |
+
print("Loading BioCLIP-2 model...")
|
| 111 |
+
try:
|
| 112 |
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:imageomics/bioclip-2')
|
| 113 |
+
self.tokenizer = open_clip.get_tokenizer('hf-hub:imageomics/bioclip-2')
|
| 114 |
+
except:
|
| 115 |
+
print("Warning: BioCLIP-2 load failed, trying base BioCLIP...")
|
| 116 |
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms('hf-hub:imageomics/bioclip')
|
| 117 |
+
self.tokenizer = open_clip.get_tokenizer('hf-hub:imageomics/bioclip')
|
| 118 |
+
self.model.to(self.device).eval()
|
| 119 |
+
self.text_features_prototypes = self._precompute_text_features()
|
| 120 |
+
|
| 121 |
+
def _precompute_text_features(self):
|
| 122 |
+
templates = [ "a photo of {}", "a herbarium specimen of {}", "a botanical photograph of {}", "{} plant species", "leaves and flowers of {}" ]
|
| 123 |
+
class_ids = [self.idx_to_class[i] for i in range(self.num_classes)]
|
| 124 |
+
class_names = [self.id_to_name.get(str(cid), str(cid)) for cid in class_ids]
|
| 125 |
+
all_emb = []; bs = 64
|
| 126 |
+
text_inputs = [t.format(name) for name in class_names for t in templates]
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
for i in range(0, len(text_inputs), bs):
|
| 129 |
+
tokens = self.tokenizer(text_inputs[i:i+bs]).to(self.device)
|
| 130 |
+
emb = self.model.encode_text(tokens)
|
| 131 |
+
all_emb.append(emb)
|
| 132 |
+
all_text_embs = torch.cat(all_emb, dim=0).cpu().numpy()
|
| 133 |
+
prototypes = np.zeros((self.num_classes, all_text_embs.shape[1]), dtype=np.float32)
|
| 134 |
+
for idx in range(self.num_classes):
|
| 135 |
+
start = idx * len(templates)
|
| 136 |
+
avg = np.mean(all_text_embs[start:start + len(templates)], axis=0)
|
| 137 |
+
norm = np.linalg.norm(avg)
|
| 138 |
+
prototypes[idx] = avg / norm if norm > 0 else avg
|
| 139 |
+
return torch.from_numpy(prototypes).to(self.device)
|
| 140 |
+
|
| 141 |
+
def predict_zero_shot_logits(self, img):
|
| 142 |
+
processed = self.preprocess(img).unsqueeze(0).to(self.device)
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
image_features = self.model.encode_image(processed)
|
| 145 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 146 |
+
prototypes = self.text_features_prototypes
|
| 147 |
+
try: logit_scale = self.model.logit_scale.exp()
|
| 148 |
+
except: logit_scale = torch.tensor(100.0).to(self.device)
|
| 149 |
+
# --- FIX: Added .detach() before .numpy() ---
|
| 150 |
+
logits = (logit_scale * image_features @ prototypes.T).detach().cpu().numpy().squeeze()
|
| 151 |
+
return logits
|
| 152 |
+
|
| 153 |
+
class EnsembleClassifier(nn.Module):
|
| 154 |
+
def __init__(self, num_handcrafted_features=40, dinov2_dim=1024, bioclip2_dim=100,
|
| 155 |
+
num_classes=100, hidden_dim=512, dropout_rate=0.3, prototype_dim=768):
|
| 156 |
+
super().__init__()
|
| 157 |
+
self.dinov2_proj = nn.Sequential(nn.Linear(dinov2_dim, hidden_dim), nn.ReLU(), nn.Dropout(dropout_rate))
|
| 158 |
+
|
| 159 |
+
# --- FIX: Removed 3rd layer to match training checkpoint (Size mismatch error) ---
|
| 160 |
+
self.handcraft_branch = nn.Sequential(
|
| 161 |
+
nn.Linear(num_handcrafted_features, 128), nn.BatchNorm1d(128), nn.ReLU(), nn.Dropout(dropout_rate),
|
| 162 |
+
nn.Linear(128, hidden_dim // 2), nn.BatchNorm1d(hidden_dim // 2), nn.ReLU(), nn.Dropout(dropout_rate)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self.bioclip2_branch = nn.Sequential(
|
| 166 |
+
nn.Linear(bioclip2_dim, hidden_dim // 4), nn.BatchNorm1d(hidden_dim // 4), nn.ReLU(), nn.Dropout(dropout_rate * 0.5))
|
| 167 |
+
fusion_input_dim = hidden_dim + hidden_dim // 2 + hidden_dim // 4
|
| 168 |
+
self.fusion = nn.Sequential(
|
| 169 |
+
nn.Linear(fusion_input_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.ReLU(), nn.Dropout(dropout_rate))
|
| 170 |
+
self.classifier = nn.Linear(hidden_dim, num_classes)
|
| 171 |
+
self.prototype_proj = nn.Linear(hidden_dim, prototype_dim)
|
| 172 |
+
|
| 173 |
+
def forward(self, handcrafted_features, dinov2_features, bioclip2_logits):
|
| 174 |
+
dinov2_out = self.dinov2_proj(dinov2_features)
|
| 175 |
+
handcraft_out = self.handcraft_branch(handcrafted_features)
|
| 176 |
+
bioclip2_out = self.bioclip2_branch(bioclip2_logits)
|
| 177 |
+
shared_features = self.fusion(torch.cat([dinov2_out, handcraft_out, bioclip2_out], dim=1))
|
| 178 |
+
class_output = self.classifier(shared_features)
|
| 179 |
+
projected_feature = self.prototype_proj(shared_features)
|
| 180 |
+
return class_output, projected_feature
|
| 181 |
+
|
| 182 |
+
# ==============================================================================
|
| 183 |
+
# 3. MANAGER CLASS & EXPORTED FUNCTION
|
| 184 |
+
# ==============================================================================
|
| 185 |
+
class ModelManager:
|
| 186 |
+
def __init__(self):
|
| 187 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 188 |
+
print(f"Initializing SPA Ensemble on {self.device}...")
|
| 189 |
+
|
| 190 |
+
# --- CONFIG: YOUR MODEL REPO ID ---
|
| 191 |
+
# Using the correct repo ID provided
|
| 192 |
+
self.REPO_ID = "FrAnKu34t23/ensemble_models_plant"
|
| 193 |
+
|
| 194 |
+
self.class_to_idx, self.idx_to_class, self.id_to_name = self.load_class_info()
|
| 195 |
+
self.num_classes = len(self.class_to_idx)
|
| 196 |
+
print(f"SPA Ensemble: Loaded {self.num_classes} classes.")
|
| 197 |
+
|
| 198 |
+
# 1. Load DINOv2
|
| 199 |
+
print("SPA Ensemble: Loading DINOv2...")
|
| 200 |
+
self.dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
|
| 201 |
+
self.dinov2.to(self.device).eval()
|
| 202 |
+
self.dinov2_transform = transforms.Compose([
|
| 203 |
+
transforms.Resize(256), transforms.CenterCrop(224),
|
| 204 |
+
transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 205 |
+
])
|
| 206 |
+
|
| 207 |
+
# 2. Load BioCLIP
|
| 208 |
+
self.bioclip = BioCLIP2ZeroShot(self.device, self.class_to_idx, self.id_to_name)
|
| 209 |
+
|
| 210 |
+
# 3. Download & Load Scaler
|
| 211 |
+
print("SPA Ensemble: Downloading Scaler...")
|
| 212 |
+
try:
|
| 213 |
+
# Now fetching scaler.joblib from the Model Repo
|
| 214 |
+
scaler_path = hf_hub_download(repo_id=self.REPO_ID, filename="scaler.joblib")
|
| 215 |
+
self.scaler = joblib.load(scaler_path)
|
| 216 |
+
print("✓ Scaler downloaded and loaded.")
|
| 217 |
+
except Exception as e:
|
| 218 |
+
print(f"Warning: Could not download scaler from {self.REPO_ID}: {e}.")
|
| 219 |
+
print("Using dummy scaler (predictions may be inaccurate).")
|
| 220 |
+
self.scaler = StandardScaler()
|
| 221 |
+
# FIX: Fit on 40 zeros instead of 49 to match the feature reduction
|
| 222 |
+
self.scaler.fit(np.zeros((1, 40)))
|
| 223 |
+
|
| 224 |
+
# 4. Download & Load Ensemble Models
|
| 225 |
+
self.models = []
|
| 226 |
+
hidden_dims = [384, 448, 512, 576, 640]
|
| 227 |
+
dropout_rates = [0.2, 0.25, 0.3, 0.35, 0.4]
|
| 228 |
+
|
| 229 |
+
print(f"SPA Ensemble: Downloading Models from {self.REPO_ID}...")
|
| 230 |
+
for i in range(5):
|
| 231 |
+
filename = f"ensemble_model_{i}.pth"
|
| 232 |
+
try:
|
| 233 |
+
# Download
|
| 234 |
+
model_path = hf_hub_download(repo_id=self.REPO_ID, filename=filename)
|
| 235 |
+
|
| 236 |
+
# Load
|
| 237 |
+
# FIX: Passed num_handcrafted_features=40 and prototype_dim=768 to match weights
|
| 238 |
+
model = EnsembleClassifier(
|
| 239 |
+
num_handcrafted_features=40, dinov2_dim=1024, bioclip2_dim=self.num_classes,
|
| 240 |
+
num_classes=self.num_classes, hidden_dim=hidden_dims[i], dropout_rate=dropout_rates[i],
|
| 241 |
+
prototype_dim=768
|
| 242 |
+
)
|
| 243 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
| 244 |
+
model.load_state_dict(state_dict)
|
| 245 |
+
model.to(self.device).eval()
|
| 246 |
+
self.models.append(model)
|
| 247 |
+
print(f"✓ Loaded {filename}")
|
| 248 |
+
except Exception as e:
|
| 249 |
+
print(f"Failed to load {filename}: {e}")
|
| 250 |
+
|
| 251 |
+
def load_class_info(self):
|
| 252 |
+
class_to_idx = {}
|
| 253 |
+
id_to_name = {}
|
| 254 |
+
|
| 255 |
+
species_path = LIST_DIR / "species_list.txt"
|
| 256 |
+
train_path = LIST_DIR / "train.txt"
|
| 257 |
+
|
| 258 |
+
classes_set = set()
|
| 259 |
+
|
| 260 |
+
if train_path.exists():
|
| 261 |
+
with open(train_path, 'r') as f:
|
| 262 |
+
for line in f:
|
| 263 |
+
parts = line.strip().split()
|
| 264 |
+
if len(parts) >= 2: classes_set.add(parts[1])
|
| 265 |
+
elif species_path.exists():
|
| 266 |
+
with open(species_path, 'r') as f:
|
| 267 |
+
for line in f:
|
| 268 |
+
parts = line.strip().split(";", 1)
|
| 269 |
+
classes_set.add(parts[0].strip())
|
| 270 |
+
else:
|
| 271 |
+
classes_set = {str(i) for i in range(100)}
|
| 272 |
+
|
| 273 |
+
sorted_classes = sorted(list(classes_set))
|
| 274 |
+
class_to_idx = {cls: idx for idx, cls in enumerate(sorted_classes)}
|
| 275 |
+
idx_to_class = {idx: cls for cls, idx in class_to_idx.items()}
|
| 276 |
+
|
| 277 |
+
if species_path.exists():
|
| 278 |
+
with open(species_path, 'r') as f:
|
| 279 |
+
for line in f:
|
| 280 |
+
if ";" in line:
|
| 281 |
+
parts = line.strip().split(";", 1)
|
| 282 |
+
id_to_name[parts[0].strip()] = parts[1].strip()
|
| 283 |
+
return class_to_idx, idx_to_class, id_to_name
|
| 284 |
+
|
| 285 |
+
def predict(self, image):
|
| 286 |
+
if image is None: return {}
|
| 287 |
+
img_pil = image.convert("RGB")
|
| 288 |
+
|
| 289 |
+
# 1. Handcrafted Features
|
| 290 |
+
hc_feats = FeatureExtractor.extract_all_features(img_pil)
|
| 291 |
+
hc_vector = np.array([hc_feats[k] for k in sorted(hc_feats.keys())]).reshape(1, -1)
|
| 292 |
+
hc_vector = self.scaler.transform(hc_vector)
|
| 293 |
+
hc_tensor = torch.FloatTensor(hc_vector).to(self.device)
|
| 294 |
+
|
| 295 |
+
# 2. DINOv2 Features
|
| 296 |
+
dino_input = self.dinov2_transform(img_pil).unsqueeze(0).to(self.device)
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
dino_feats = self.dinov2(dino_input)
|
| 299 |
+
dino_feats = dino_feats / (dino_feats.norm(dim=-1, keepdim=True) + 1e-8)
|
| 300 |
+
|
| 301 |
+
# 3. BioCLIP Features
|
| 302 |
+
bioclip_logits = self.bioclip.predict_zero_shot_logits(img_pil)
|
| 303 |
+
bioclip_tensor = torch.FloatTensor(bioclip_logits).unsqueeze(0).to(self.device)
|
| 304 |
+
|
| 305 |
+
# 4. Ensemble Prediction
|
| 306 |
+
all_probs = []
|
| 307 |
+
if not self.models: return {"Error": "SPA Models not loaded"}
|
| 308 |
+
|
| 309 |
+
for model in self.models:
|
| 310 |
+
with torch.no_grad():
|
| 311 |
+
probs, _ = model(hc_tensor, dino_feats, bioclip_tensor)
|
| 312 |
+
probs = F.softmax(probs, dim=1).cpu().numpy()[0]
|
| 313 |
+
all_probs.append(probs)
|
| 314 |
+
|
| 315 |
+
final_ens_probs = np.mean(all_probs, axis=0)
|
| 316 |
+
|
| 317 |
+
# 5. Hybrid Routing
|
| 318 |
+
exp_logits = np.exp(bioclip_logits)
|
| 319 |
+
bioclip_probs = exp_logits / np.sum(exp_logits)
|
| 320 |
+
|
| 321 |
+
ens_pred_idx = np.argmax(final_ens_probs)
|
| 322 |
+
ens_conf = final_ens_probs[ens_pred_idx]
|
| 323 |
+
|
| 324 |
+
if ens_conf < CONFIDENCE_THRESHOLD:
|
| 325 |
+
final_probs = (final_ens_probs + bioclip_probs) / 2
|
| 326 |
+
else:
|
| 327 |
+
final_probs = final_ens_probs
|
| 328 |
+
|
| 329 |
+
# 6. Formatting
|
| 330 |
+
top_k = 5
|
| 331 |
+
top_indices = np.argsort(final_probs)[::-1][:top_k]
|
| 332 |
+
results = {}
|
| 333 |
+
for idx in top_indices:
|
| 334 |
+
class_id = self.idx_to_class[idx]
|
| 335 |
+
name = self.id_to_name.get(class_id, class_id)
|
| 336 |
+
score = float(final_probs[idx])
|
| 337 |
+
results[f"{name} ({class_id})"] = score
|
| 338 |
+
|
| 339 |
+
return results
|
| 340 |
+
|
| 341 |
+
# Initialize Singleton
|
| 342 |
+
try:
|
| 343 |
+
spa_manager = ModelManager()
|
| 344 |
+
except Exception as e:
|
| 345 |
+
print(f"CRITICAL ERROR initializing SPA: {e}")
|
| 346 |
+
spa_manager = None
|
| 347 |
+
|
| 348 |
+
def predict_spa(image):
|
| 349 |
+
if spa_manager is None:
|
| 350 |
+
return {"Error": "SPA System failed to initialize."}
|
| 351 |
+
return spa_manager.predict(image)
|