Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples
This is a Asymmetric Inference-free SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SparseEncoder(
(0): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
)
(document): Sequential(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
model = SparseEncoder("monkeypostulate/inference-free-splade-distilbert-base-uncased-nq")
queries = [
"\u00bfHay una s\u00e1bana de algod\u00f3n ajustada disponible en tama\u00f1o queen?",
]
documents = [
'Pizuna 400 Thread Count Cotton Fitted-Sheet Queen Size White 1pc, 100% Long Staple Cotton Sateen Fitted Bed Sheet With All Around Elastic Deep Pocket Queen Sheets Fit Up to 15Inch (White Fitted Sheet)',
'ArtSocket Shower Curtain Teal Rustic Shabby Country Chic Blue Curtains Wood Rose Home Bathroom Decor Polyester Fabric Waterproof 72 x 72 Inches Set with Hooks',
'AFARER Case Compatible with Samsung Galaxy S7 5.1 inch, Military Grade 12ft Drop Tested Protective Case with Kickstand,Military Armor Dual Layer Protective Cover - Blue',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
Evaluation
Metrics
Sparse Information Retrieval
| Metric |
Value |
| dot_accuracy@1 |
0.3 |
| dot_accuracy@3 |
0.58 |
| dot_accuracy@5 |
0.66 |
| dot_accuracy@10 |
0.76 |
| dot_precision@1 |
0.3 |
| dot_precision@3 |
0.1933 |
| dot_precision@5 |
0.132 |
| dot_precision@10 |
0.076 |
| dot_recall@1 |
0.3 |
| dot_recall@3 |
0.58 |
| dot_recall@5 |
0.66 |
| dot_recall@10 |
0.76 |
| dot_ndcg@10 |
0.5302 |
| dot_mrr@10 |
0.4564 |
| dot_map@100 |
0.4675 |
| query_active_dims |
6.38 |
| query_sparsity_ratio |
0.9998 |
| corpus_active_dims |
813.6909 |
| corpus_sparsity_ratio |
0.9733 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 89,000 training samples
- Columns:
query and document
- Approximate statistics based on the first 1000 samples:
|
query |
document |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 21.52 tokens
- max: 44 tokens
|
- min: 8 tokens
- mean: 33.4 tokens
- max: 93 tokens
|
- Samples:
| query |
document |
¿Hay una lámpara de colgar con batería disponible? |
Farmhouse Plug in Pendant Light with On/Off Switch Wire Caged Hanging Pendant Lamp 16ft Cord |
¿Hay leggings con bolsillos disponibles para mujeres? |
IUGA High Waist Yoga Pants with Pockets, Tummy Control, Workout Pants for Women 4 Way Stretch Yoga Leggings with Pockets |
¿Cuál es la tapa de oscuridad marrón disponible? |
Thicken It 100% Scalp Coverage Hair Powder - DARK BROWN - Talc-Free .32 oz. Water Resistant Hair Loss Concealer. Naturally Thicker Than Hair Fibers & Spray Concealers |
- Loss:
SpladeLoss with these parameters:{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 0.003,
"query_regularizer_weight": 0
}
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
query and document
- Approximate statistics based on the first 1000 samples:
|
query |
document |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 20.94 tokens
- max: 40 tokens
|
- min: 8 tokens
- mean: 33.09 tokens
- max: 79 tokens
|
- Samples:
| query |
document |
¿Qué es un modelo anatómico del corazón? |
Axis Scientific Heart Model, 2-Part Deluxe Life Size Human Heart Replica with 34 Anatomical Structures, Held Together with Magnets, Includes Mounted Display Base, Detailed Product Manual and Warranty |
¿Hay un buscador de peces portátil disponible? |
HawkEye Fishtrax 1C Fish Finder with HD Color Virtuview Display, Black/Red, 2" H x 1.6" W Screen Size |
¿Hay un disfraz de Anna adulta de Frozen disponible para comprar? |
Mitef Anime Cosplay Costume Princess Anna Fancy Dress with Shawl for Adult, L |
- Loss:
SpladeLoss with these parameters:{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 0.003,
"query_regularizer_weight": 0
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
learning_rate: 2e-05
warmup_ratio: 0.1
batch_sampler: no_duplicates
router_mapping: {'query': 'query', 'answer': 'document'}
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {'query': 'query', 'answer': 'document'}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
NanoMSMARCO_dot_ndcg@10 |
| 0.5747 |
200 |
3.33 |
- |
| 1.1494 |
400 |
2.755 |
- |
| -1 |
-1 |
- |
0.5302 |
Framework Versions
- Python: 3.9.6
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.8.0
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}