JAV-Gen / tools /datasets /transform.py
kaiw7's picture
Upload folder using huggingface_hub
e490e7e verified
import argparse
import os
import random
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from .utils import IMG_EXTENSIONS, extract_frames
tqdm.pandas()
try:
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=True)
pandas_has_parallel = True
except ImportError:
pandas_has_parallel = False
def apply(df, func, **kwargs):
if pandas_has_parallel:
return df.parallel_apply(func, **kwargs)
return df.progress_apply(func, **kwargs)
def get_new_path(path, input_dir, output):
path_new = os.path.join(output, os.path.relpath(path, input_dir))
os.makedirs(os.path.dirname(path_new), exist_ok=True)
return path_new
def resize(path, length, input_dir, output):
path_new = get_new_path(path, input_dir, output)
ext = os.path.splitext(path)[1].lower()
assert ext in IMG_EXTENSIONS
img = cv2.imread(path)
if img is not None:
h, w = img.shape[:2]
if min(h, w) > length:
if h > w:
new_h = length
new_w = int(w * new_h / h)
else:
new_w = length
new_h = int(h * new_w / w)
img = cv2.resize(img, (new_w, new_h))
cv2.imwrite(path_new, img)
else:
path_new = ""
return path_new
def rand_crop(path, input_dir, output):
ext = os.path.splitext(path)[1].lower()
path_new = get_new_path(path, input_dir, output)
assert ext in IMG_EXTENSIONS
img = cv2.imread(path)
if img is not None:
h, w = img.shape[:2]
width, height, _ = img.shape
pos = random.randint(0, 3)
if pos == 0:
img_cropped = img[: width // 2, : height // 2]
elif pos == 1:
img_cropped = img[width // 2 :, : height // 2]
elif pos == 2:
img_cropped = img[: width // 2, height // 2 :]
else:
img_cropped = img[width // 2 :, height // 2 :]
cv2.imwrite(path_new, img_cropped)
else:
path_new = ""
return path_new
def main(args):
data = pd.read_csv(args.input)
if args.method == "img_rand_crop":
data["path"] = apply(data["path"], lambda x: rand_crop(x, args.input_dir, args.output))
output_csv = args.input.replace(".csv", f"_rand_crop.csv")
elif args.method == "img_resize":
data["path"] = apply(data["path"], lambda x: resize(x, args.length, args.input_dir, args.output))
output_csv = args.input.replace(".csv", f"_resized{args.length}.csv")
elif args.method == "vid_frame_extract":
points = args.points if args.points is not None else args.points_index
data = pd.DataFrame(np.repeat(data.values, 3, axis=0), columns=data.columns)
num_points = len(points)
data["point"] = np.nan
for i, point in enumerate(points):
if isinstance(point, int):
data.loc[i::num_points, "point"] = point
else:
data.loc[i::num_points, "point"] = data.loc[i::num_points, "num_frames"] * point
data["path"] = apply(data, lambda x: extract_frames(x["path"], args.input_dir, args.output, x["point"]), axis=1)
output_csv = args.input.replace(".csv", f"_vid_frame_extract.csv")
data.to_csv(output_csv, index=False)
print(f"Saved to {output_csv}")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("method", type=str, choices=["img_resize", "img_rand_crop", "vid_frame_extract"])
parser.add_argument("input", type=str)
parser.add_argument("input_dir", type=str)
parser.add_argument("output", type=str)
parser.add_argument("--disable-parallel", action="store_true")
parser.add_argument("--length", type=int, default=2160)
parser.add_argument("--seed", type=int, default=42, help="seed for random")
parser.add_argument("--points", nargs="+", type=float, default=None)
parser.add_argument("--points_index", nargs="+", type=int, default=None)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
if args.disable_parallel:
pandas_has_parallel = False
main(args)