import argparse import os import random import cv2 import numpy as np import pandas as pd from tqdm import tqdm from .utils import IMG_EXTENSIONS, extract_frames tqdm.pandas() try: from pandarallel import pandarallel pandarallel.initialize(progress_bar=True) pandas_has_parallel = True except ImportError: pandas_has_parallel = False def apply(df, func, **kwargs): if pandas_has_parallel: return df.parallel_apply(func, **kwargs) return df.progress_apply(func, **kwargs) def get_new_path(path, input_dir, output): path_new = os.path.join(output, os.path.relpath(path, input_dir)) os.makedirs(os.path.dirname(path_new), exist_ok=True) return path_new def resize(path, length, input_dir, output): path_new = get_new_path(path, input_dir, output) ext = os.path.splitext(path)[1].lower() assert ext in IMG_EXTENSIONS img = cv2.imread(path) if img is not None: h, w = img.shape[:2] if min(h, w) > length: if h > w: new_h = length new_w = int(w * new_h / h) else: new_w = length new_h = int(h * new_w / w) img = cv2.resize(img, (new_w, new_h)) cv2.imwrite(path_new, img) else: path_new = "" return path_new def rand_crop(path, input_dir, output): ext = os.path.splitext(path)[1].lower() path_new = get_new_path(path, input_dir, output) assert ext in IMG_EXTENSIONS img = cv2.imread(path) if img is not None: h, w = img.shape[:2] width, height, _ = img.shape pos = random.randint(0, 3) if pos == 0: img_cropped = img[: width // 2, : height // 2] elif pos == 1: img_cropped = img[width // 2 :, : height // 2] elif pos == 2: img_cropped = img[: width // 2, height // 2 :] else: img_cropped = img[width // 2 :, height // 2 :] cv2.imwrite(path_new, img_cropped) else: path_new = "" return path_new def main(args): data = pd.read_csv(args.input) if args.method == "img_rand_crop": data["path"] = apply(data["path"], lambda x: rand_crop(x, args.input_dir, args.output)) output_csv = args.input.replace(".csv", f"_rand_crop.csv") elif args.method == "img_resize": data["path"] = apply(data["path"], lambda x: resize(x, args.length, args.input_dir, args.output)) output_csv = args.input.replace(".csv", f"_resized{args.length}.csv") elif args.method == "vid_frame_extract": points = args.points if args.points is not None else args.points_index data = pd.DataFrame(np.repeat(data.values, 3, axis=0), columns=data.columns) num_points = len(points) data["point"] = np.nan for i, point in enumerate(points): if isinstance(point, int): data.loc[i::num_points, "point"] = point else: data.loc[i::num_points, "point"] = data.loc[i::num_points, "num_frames"] * point data["path"] = apply(data, lambda x: extract_frames(x["path"], args.input_dir, args.output, x["point"]), axis=1) output_csv = args.input.replace(".csv", f"_vid_frame_extract.csv") data.to_csv(output_csv, index=False) print(f"Saved to {output_csv}") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("method", type=str, choices=["img_resize", "img_rand_crop", "vid_frame_extract"]) parser.add_argument("input", type=str) parser.add_argument("input_dir", type=str) parser.add_argument("output", type=str) parser.add_argument("--disable-parallel", action="store_true") parser.add_argument("--length", type=int, default=2160) parser.add_argument("--seed", type=int, default=42, help="seed for random") parser.add_argument("--points", nargs="+", type=float, default=None) parser.add_argument("--points_index", nargs="+", type=int, default=None) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() random.seed(args.seed) if args.disable_parallel: pandas_has_parallel = False main(args)